データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

データ・アナリティクス入門

データ分析の新しい視点を得る旅

データ分析の初め方とは? データ分析を開始する際、何も考えずに「とりあえず」データを引っ張ってくることが多いと感じていました。しかし、何を知りたくて、何の目的で分析を行うのかを明確にすることの重要性を改めて認識しました。特に、課題がある場合、その課題の根本を探るためには、MECEを意識して質の良い仮説を立てることが大切だと気付きました。 チームの課題をどう把握する? 毎週提出されるデータを見て、課題がどこにあるのか、そしてその課題に対する現在の立場やGAPを見つけるようにしています。まず、チームとしての課題や目標を確認することが重要です。これが明確になって初めて、どのデータを用い、どのように分析(比較)するのが適切であるかが理解できる気がします。 他社のフレームをどう活用する? 現在、特に明確な課題や問題があるわけではないので、よりよくするために現状と目標を比較しようと考えています。その際には、自社だけでなく、他社や市場で行われている同様の分析フレームを参照することも役立つでしょう。

デザイン思考入門

現場で生まれた共感の提案力

現場で何が分かった? IT業界でリサーチに基づくソリューション提案を行う中、デザインシンキングの実践が顧客の真のニーズに沿った提案を可能にすると実感しました。まず、顧客の現場に足を運び、業務を観察して共感を得ることから始め、データに基づいて本質的な課題を特定しました。その後、社内外の関係者を交えたワークショップを通じて多様なアイデアを創出し、モックアップやデモ環境を用いて解決策を可視化した上で、実際のユーザーテストとフィードバックを重ねることで改善を図りました。この一連のプロセスにより、製品機能の提案から脱却し、顧客の真のニーズに応じたソリューションを提供できるようになりました。 対話で見えた本質は? また、現場での観察や対話を通じ、顧客が本当に求めるものを深く理解する重要性を再確認しました。従来の単なる機能アピールから一歩進み、顧客と共に課題解決を目指すことで、信頼関係が築かれたと感じています。今後もデザインシンキングを積極的に取り入れ、顧客視点に立った提案を実践していきたいと思います。

クリティカルシンキング入門

業務効率アップ!資料作成の極意

情報整理の重要性とは? 相手に伝えたい内容を考え、相手に伝わるための情報と表現の整理に時間をかけることが重要だと感じました。さまざまな業務がある中で、資料作成に多くの時間を費やす点は気になるところですが、順序立てて情報を整理することで、多少時間がかかるのは仕方ないことだと再認識しました。また、それぞれのフォントや色の意味を理解し、活用することも考えています。 報告資料作成の工夫は? 人事関連の政策で部のメンバー、社員や役員に社内の人員状況に関して報告する際の資料作成に役立つと感じました。その際、自身が伝えたいことだけでなく、相手が気になっている内容も予測して作成することで、その後の議論が成果につながるでしょう。 データ可視化のポイントは? グラフ作成や資料作成の際には、資料を通して伝えたい内容を考え、それに合わせたグラフを用意できればと思います。データをまず理解するためにグラフを作成し、その後にどのような結果を出すかを考え、必要なグラフや資料を追加で検討することが大切だと感じました。

クリティカルシンキング入門

これで自分も変われる!ナノ単科の魅力

他の視点をどう取り入れる? 自分一人だけの発想には偏りがあるため、他の視点も取り入れることが重要です。また、問題解決に飛びつくのではなく、しっかりとした分析を行うことが求められます。 効果的なメッセージ伝達法 伝えたいメッセージが分かりやすい文章やグラフを作成するためには、ひと手間を加える努力が必要です。主張の根拠を明確にし、三つの問いに立ち戻ることも大切です。 業務効率改善のためにできることは? 業務効率を改善するためには、現状の問題点を共有し、全員の意識を変革させる活動が重要です。進捗が悪い項目については、その理由を整理し、分かりやすく伝えることで、活動内容を明確にしていくことが求められます。 進捗遅れの改善策をどう探す? 進捗の遅れている状況はデータ化し、改善点をグラフ化して目で見て理解しやすくすることが効果的です。また、改善についての問いを立て、データを基にした根拠とともに共有化することが大切です。活動を明確化し、継続して検証を繰り返すことが、真の改善につながります。

クリティカルシンキング入門

仮説検証で視野を広げる思考法

切り口で見える? 複数のデータから一つの仮説を立てる際、切り口を変えると見え方が異なることがあります。これは、文章や言葉だけでなく、数字を分析する際にも思考が偏ることがあり得ると感じさせられました。今見えている情報に基づいて判断することに疑問を持つきっかけとなったと思います。 分析で何が見える? 事務リスク発生の原因分析においては、数値を扱う際の前処理やカテゴライズの過程で切り口を変えることが有効だと感じました。残業時間の増加や処理目標未達成の原因を分析する際にも、同様の手法で切り口を変えてカテゴライズすることで、見過ごされている問題を発見できる可能性があると思いました。 区切ると何が見える? 原因分析時のカテゴライズでは、単にキリのいい数字で区切るのではなく、仮説を立てた上で細かく区切ることが重要です。また、一度作業を終えたらそれで結論とせず、他に考えられる要素がないか一度立ち止まることも大切です。全体の定義を明確にし、漏れや重複がないように意識して区切ることを心がけるべきです。

アカウンティング入門

企業を深く知る!新視点の財務分析

なぜ財務表を学ぶの? ライブ授業では、ある企業の事例を通して、財務諸表を詳しく見ることの重要性を学びました。これにより、損益計算書や貸借対照表の理解を深めることができ、この1か月以上の学びを振り返り、今後の学習方法についても考えることができました。 どうやって企業理解? まず、顧客企業の財務分析においては、企業のホームページや採用情報、関連出版物、さらにはヒアリングを通じてそのビジネスモデルをしっかり理解していきたいと思います。これによって、単なるテンプレートに基づく定量分析ではなく、具体的に何を分析したかが明確になるような分析が可能になると考えています。 仮説検証の流れは? 次回定量分析を行う際には、まずデータを収集するのではなく、企業のホームページや採用ページ、出版物をもとに、企業の人員構造や財務状況について仮説を立ててみます。その後、この仮説を検証するために定量分析を実施し、特に仮説と異なる結果が出た場合には、顧客への報告時に質問や議論を重ね、理解を深めていく予定です。

クリティカルシンキング入門

データ分析の新発見!MECEの秘密

データ分解の新しい視点は? データや物事を分割する際には、一度分解して終わりではありません。別の観点でも分解することで、新たな気づきを得ることができます。MECEの分け方には層別、変数別(因数分解)、プロセス別の三種類が代表的です。まずは大まかに分け、その後に細かく分解することが重要です。 効果的な伝達方法とは? 自分の考えを相手に伝える際には、ピラミッド・ストラクチャーを使って複数の観点で整理することが有効です。このとき、まず層別、変数別(因数分解)、プロセス別で瞬間的に整理できるようにトレーニングすることが重要です。細かい切り口でいきなり分けず、大まかに分けることから始めることが推奨されます。 自主演習でスキル向上を? さらに、ピラミッド・ストラクチャーの自主演習では、一つのパターンだけで終わらず、二つ以上の別解を出すように心がけます。瞬発的に切り口を見つける自主演習として、毎日通勤時に自分にお題を出し、層別、変数別(因数分解)、プロセス別で切り口を出す練習をすると効果的です。

データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

データ・アナリティクス入門

未来を切り拓く問題解決力

ステップで何が分かる? 問題解決のステップ「What」「Where」「Why」「How」を意識することで、頭の中を整理し、分析を実施しやすくなります。直感的に何が問題でどのように解決すべきかを考えがちですが、この手順を踏むことで、問題の本質を的確に捉え、解決策を導きやすくなります。 理想と現実はどう違う? また、あるべき姿と現状とのギャップを定量的に示すことも非常に重要です。 企画策定はどう進む? たとえば、規程の改正やガバナンスの運用に関する企画を策定する際には、企画の目的や解決すべき問題を問題解決のステップに沿って整理します。そして、あるべき姿と現状とのギャップを定量的に示すことで、企画の意義が伝わりやすくなり、賛同を得やすくなります。 スピードと注意点は? 常に問題解決のステップを意識し、問題の本質を見極める力を養うとともに、課題を示すデータが整っているか確認することが大切です。一方で、業務のスピード感も求められるため、事前の分析が過剰にならないよう注意が必要です。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right