データ・アナリティクス入門

比較のレパートリーを増やす意味

分析の目的は何か? 人によって着眼点が大きく異なるため、自分が分析したい目的や伝えたい相手の視点に沿った比較対象を見つけることが非常に重要であると学びました。受講前は、分析手法やデータ収集、整理が重要と考えていましたが、実際には目的設定や比較軸の決定がより重要であると感じました。 営業での活かし方は? この知識は、他者との提案時の競合価格比較や、営業時の他社比較資料の作成に役立つと考えています。特に営業現場では、価格以外の定量的な部分でどれだけ差異をつけられるかが非常に大切です。このような場面で活用していきたいと思います。 比較軸をどう増やす? まずは比較軸のレパートリーを増やすことを目指します。今回の講座で学んだ、特定条件の有無による比較に加え、他の方の意見や視点を積極的に取り入れ、より多くの軸を自分の中に取り込んでいきたいです。そうして得た軸を活用し、より目的に合ったものを選定できるよう努めていきます。

データ・アナリティクス入門

データでつかむ共感と納得

データ分析の意義とは? 「分析とは比較なり」と分かっていても、その意味を他の人に伝えるのは別の課題です。結果的に、データ分析の意味とは何を目的にし、どこに活かすかであると改めて実感しました。また、適切なデータ選びと結果の見せ方も理解に大きく影響を与えることを痛感しました。 分析結果をどう伝える? これまでのデータ分析は、自分が次の戦略を考えるために、自分が理解することを前提にしていました。しかし、考えたプランが良くても、納得や共感を得られなければ意味がありません。多くの人に理解される分析を心掛けるべきであると感じています。 経営戦略に重要なデータ選び データ分析のプロセスを含めて、しっかりと説明できることが重要な前提です。正しい経営戦略を考えるためには、どのデータを重視し、補足できるデータを選ぶかが鍵であり、会社の進むべき方向性を理解してもらうために、方向性を一致させる納得感の高いアウトプットを意識します。

データ・アナリティクス入門

現状把握で切り拓く自分の未来

考えの整理はどう? 総括すると、各工程ごとに自分の考えを丁寧に整理することの重要性を改めて感じました。「いつ」「どの業務が」「なぜ」「どのように」といった観点で整理し、その上で仮説を立て検証することで、具体的な解決策を導き出せると理解しています。 現状把握は何が鍵? まずは、現状を正確に把握することが不可欠です。具体的には、5W1Hの観点から現状を整理し、各工程を定量的に明示することが求められます。また、数字だけでなく現場へのヒアリングを通じ、データと実態に大きなズレがないかを確認していくことが重要です。 仮説検証はどう進む? 重ねて申し上げますが、現状把握を基に仮説を立て、検証するプロセスが鍵となります。仮説を検討する際には、現場担当者の感覚も反映させることで大きなズレが生じないよう確認し、データ整理は目的化せず、解決策検討のための具体的なアプローチとして行動に移す意識を大切にしたいと考えています。

クリティカルシンキング入門

データ活用で気づく、新たな成長のヒント

なぜ問いを立てるのか? 考える前に問いを立て、何を考えるべきかを明確にすることが、大きな気づきとなりました。 データ考察で何が見える? 課題に直面した際、データを基に考察すると、必ず浮き彫りになる点があります。浮かび上がった課題を鵜呑みにせず、他の可能性も探ることの重要性を学びました。 達成者の傾向はどう分析する? 日々の日商報告を確認し、達成者の傾向と自分への適用を考察します。業界的な前回の傾向や課題に対して、どのような対策が可能かを考えるのが重要です。常にデータを収集し、顧客に一目で分かるように可視化します。また、月ごとの求職者の動きなども考慮します。 営業活動をどう振り返る? 毎週の振り返りでは、自身の営業活動を定量的な観点から振り返り、課題の提示と次週の動きを共有します。また、顧客提案時には「人を採用する」以外のニーズをさらに深掘りし、できるだけ定量的に提案していくことを心掛けています。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

クリティカルシンキング入門

データ分析の新しい視点を発見!

目的と仮説の意義は? データ分析を行う際には、目的と仮説をしっかりと持って取り組むことが大切です。そして、分析の結果に対する「それでどうなるのか?」を明確にすることを意識しましょう。MECE(モレなくダブりなく)にグルーピングした後、そのグルーピングを自分でレビューし、精度を高めることも重要です。 自己レビューの限界は? 私は日常的に分析や示唆出しを行っており、適切な粒度でグルーピングをすることの重要性を感じています。しかし、自己レビューには限界があるため、まず自分でレビューをした後に、他者からのレビューを意図的に組み込むことで、多角的な視点を得るようにしています。 レビュー導入の理由は? 分析後には、レビューを求めるプロセスを自身の業務フローに組み込んでいます。他者のレビューを得るために、締切よりも早めの段階でアウトプットを心がけています。この取り組みは、企画を伴うすべての業務に適用しています。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

マーケティング入門

顧客価値を見極めるブランド戦略奮闘記

顧客価値をどう見極める? 誰に売るかを考える際、顧客にとっての価値を見出すことの重要性を再認識しました。顧客がその価値を本当に認めるかどうかを判断するのは難しいため、主観に頼らず、客観的なデータを基にした判断が重要だと実感しました。 ブランディングで活用するデータは? 現在、私はグループ会社のフランチャイズ店のブランディングに取り組んでいます。ここでは自身の経験に基づく主観的な考えだけでなく、現場でのヒアリングやアンケートなど、客観的データを用いて、ターゲットとしているフランチャイズ店のオーナーやエンドユーザーに価値を提供する施策を検討しています。 ステークホルダーへの価値提供をどう確認する? また、施策を展開するにあたり、自社だけでなく、フランチャイズ店やエンドユーザーなど、すべてのステークホルダーに対して確かな価値を提供できているかを確認するため、時折立ち止まって考えることが重要だと感じています。

クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

クリティカルシンキング入門

見やすさと中身を追求した資料作り術

表現の工夫で印象はどう変わる? 表現の工夫によって、相手に与える印象は大きく変わることを学びました。まずは基本を理解し、様々なグラフのタイプが持つ理由を踏まえた上で応用するかどうかを判断することが重要です。デザインに意識を向けすぎると中身のないデータ資料になってしまうため、本質を理解し、資料をまとめた上で批判的思考と他者目線を意識して取り組みます。 資料作成のポイントとは? これを元に、フォントや色合い、グラフなどが見やすくまとめられた資料を作成することを心がけます。過度に凝るのではなく、必要な内容に集中し、感覚的にわかりやすく、好印象を与える資料作成のヒントを得ることができました。 GPTを活用すべき理由 今後はGPTなどを活用し、グラフやフォントの適切さを確認しながら、より分かりやすい資料を作成していきます。読む相手が辛くならないように配慮し、他者目線を考慮した文章や資料を作成するよう努めます。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right