データ・アナリティクス入門

視覚化で輝く数値のストーリー

平均値の限界は? 平均値は計算が容易で意味も通じやすいことからよく用いられますが、ばらつきの情報が考慮されていないため、正しい情報を得る上では限界があります。代表値だけではデータ全体を俯瞰し、妥当性を確認するのが難しいため、データのビジュアライズ化が重要だと感じます。 なぜ見せる工夫が必要? 受領したデータの全体像を把握するため、代表値の算出に加え、ビジュアライズ化を実施することにしています。普段はExcelを使用し、関数を活用して代表値を手軽に算出しているため、この作業の頻度は高いです。しかし、ビジュアライズ化は目的を踏まえた「見せ方」を検討する過程があるため、どうしても敬遠しがちです。そこで、この工程も積極的に実施するよう努めています。 効率化はどのように? また、代表値の算出を効率化するために、算出用の雛形シートを作成し、使い回せるように準備しておきます。ビジュアライズ化については、データ確認結果を部内で共有する際に、誰にでも説明しやすい資料作成を心がけています。

クリティカルシンキング入門

小さな問いから生まれる大発見

問いの本質は何だろう? はじめに、「問い」とは何かを確認することが重要です。求められる答えの背景には、表面には現れない前提が存在するため、十分な擦り合わせがなければ正しい解答にたどり着くことは難しいです。主張を固める際は、その要素を分解し、論理的な根拠で埋めていく方法が求められます。 目的意識はどう伝える? 次に、データの加工や各種フレームワークを用いて主張を説明する際は、常に目的を意識する必要があります。たとえば、店舗の取り組みを従業員に周知し実行してもらう場合、目的・目標、そして根拠を明確に伝えることが重要です。課題表の作成も、この順番で進めると効果的です。 研修の根拠は何? さらに、新入社員の教育担当も行っており、その経験が研修方法にも生かされています。下準備が多く必要ではありますが、経験則や感覚に頼った研修では新入社員の再現性が低くなるのではないかと懸念していました。そこで、マニュアルに記載された各行動の根拠を分解し、根本的な理由から丁寧に説明することに努めています。

データ・アナリティクス入門

受講生が語る学びの鼓動

平均と分布、どう考える? データの平均値を見る際には、数値の散らばりも把握することが大切です。また、代表値を選定する時は、元データの傾向を十分に理解し、適切な判断を下す必要があります。やみくもな分析に陥らず、常に仮説を組み立てる姿勢が求められます。 分析法はどうあるべし? 分析を進める際は、まず利用可能なフレームワークを用いて仮説を明確にし、必要なデータが不足している場合は自ら収集するなどの努力が必要です。数字の根拠に基づいたストーリー構築が重要であり、グラフを効果的に活用することで、視覚的にもデータの傾向を把握できます。 仮説はどこから? リサーチの機会は多くありますが、その前プロセスを軽視せず、解決すべき問いと対応する仮説をしっかり持つことが肝心です。仮説検討時には、使えるフレームワークを積極的に取り入れることで、的確な分析が可能になります。 分析目的は何? 何のための分析なのか、その目的を常に明確にしながら、説得力のあるストーリー作りに努めることが求められます。

クリティカルシンキング入門

データの魔法で問題解決力が飛躍

イシュー設定の重要性は? イシューの設定によりデータの見方が変わることを実践を通じて理解しました。問いの形式で設定すると共有が容易になるため、答えを出すことが問題解決に直結し、仕事の本質とも一致しています。問題解決の真因に迫る問いを設定し、その後、スキルを駆使してロジカルに分析を進める必要があります。 専門人材育成の秘訣とは? 事業計画の作成時には、社会の課題解決、つまりイシューの設定を行います。また、専門人材の育成においては、相手の要望や期待に偏らないようにし、ビジョンに沿った結果を出すための企画を練ることが重要です。 MECEのチェックは欠かせない? ソリューション開発・提案においては、根本的な解決事項の抽出にこの考え方を応用します。そして、自身が設定した目的・問いについては必ず二度確認し、MECEになっているかをチェックします(これはよく抜けがちです)。視座を高めるためには、経営者の視点で物事を捉え、少なくとも指導を受けるチーフと同じ視点で考えることを意識します。

戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

データ・アナリティクス入門

条件そろえてわかる分析の極意

分析の基本って何? 「分析は比較なり」と「分析条件は揃える(apples to apples)」という考え方を、改めて言語化し再認識する機会となりました。分析の目的を明確にすることの大切さを改めて感じ、普段当たり前に使っている言葉やアクションが、人に説明する際に十分に簡潔な言葉で表現できていなかった点に気づくことができました。 分かりやすい伝え方は? この気づきのおかげで、自分が実際に行動する際や他者に伝えるときに、より明確で分かりやすい表現を心がけるようになりました。また、分析やデータ収集設計に取り組む際は、比較のための軸が整っているか、条件が一致しているかをしっかり確認することが必要だと感じました。 設計と準備はどう整う? たとえば、データ収集設計を行う中で、ユーザー単位なのかセッション単位なのかといった視点を明確にすることが重要です。こうした点について、どのような設計や準備が効果的か、皆さんと意見を交わしながらさらなる検討を進めていきたいと考えています。

データ・アナリティクス入門

ロジックで描く理想への一歩

現状と理想の差は? 問題解決には、これまで「正常なあるべき姿」とのギャップを埋める施策が主流とされてきたが、実は「現在の正常な状態」から「ありたい姿」へのギャップを埋めることも、立派な問題解決だという点に気が付きました。 アイデアは何で生まれる? アイデアを生み出す際には、ロジックツリーのようなフレームワークを用いることが重要だと感じました。ただし、そのためには意味のある切り口が不可欠で、切り口となるパターンの数は経験によるところが大きいと考えています。 ロジックはどう活かす? また、現在社内で生じている問題に対して、ロジックツリーを用いて「WHY」と「How」を整理したいと思いました。これまで、あるべき姿と現在の状況を数値で示すことが難しい(もしくは手間がかかる)ため、取り組みが進まず、結果として抽象的な対策案に終始していた印象です。今後は、数値化したデータを基にロジックツリーを活用することで、より具体的で幅広い施策を検討できるのではないかと感じています。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

クリティカルシンキング入門

振り返りから始まる学び筋トレ

授業振り返りの視点は? week1の授業はとても新鮮な印象を受けたものの、具体的に何を行ったのかはすぐには思い起こせない部分もありました。しかし、学習は常に振り返りながら継続することが大切だと強く感じています。クリティカルシンキングについては、筋トレと同じように、継続して実践し、活用する場面を増やしていく必要があると考え、今後の生活に取り入れていきたいと思っています。 実務に学びはどう活かす? また、これまで学んだ学習ポイントを仕事で活かすことは非常に重要です。具体的には、以下の点を心がけています。 ・課題に対して常に「問いは何か」を意識すること。 ・問いに対する打ち手を考える際、キーメッセージとそれを支える根拠を必ずセットで示すこと。 ・問いや打ち手を検討する際、データを単に眺めるのではなく、加工や分類を工夫しながら取り扱うこと。 ・日本語では主語と述語の使い方に注意し、資料作成時には色彩や矢印など、相手にどう伝わるかを考えたレイアウトを心がけること。

データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right