アカウンティング入門

実務に活かす損益計算の分解術

損益計算書は理解できる? 言葉だけで損益計算書を理解しているつもりでも、実際に仕組みを分解して説明できるほどの理解には至っていないことに気づきました。具体的には、売上高や経常利益については概ね把握していたものの、その中間に位置する営業利益から当期純利益までの損益の流れが頭の中で明確にイメージできていませんでした。 自社財源はどう考える? また、自社の財源の賄い方について、少なくとも5つの段階に分解して考えなければ、全体の傾向を正しく捉えることはできないと実感しました。 医療機関の収益は? 実務においても、医療機関の財務分析を進めている中で、今回の学びを活かす機会がありました。早速、WEEK02で学習した内容をもとに、P/Lの各要素を分解し「この医療機関はどの部分で収益を生み出しているのか」という仮説を立ててみるつもりです。 分解手順を吟味する? さらに、その分解手順をフォーマット化して、様々なケースに当てはめながら傾向の違いを検証していく予定です。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

戦略思考入門

未来を見据えた営業戦略の構築方法

他業種比較で得られた発見とは? 他業種の動向を比較することで、自分の業界における事業経済性の理解が深まりました。特に「返報性」という言葉については、以前は知らなかったものの、自分にも当てはまる心理状態であり、大きな発見でした。また、経済性が時代の流れによって絶えず変化することも学びました。 幅広い視野からの分析で見えた課題は? 自分の顧客やエリアに注目しがちですが、支店規模や全社規模といった幅広い視野での分析の必要性を感じました。特に、捨てるという技術についてはまだ足りないと感じています。今後は最短距離を常に意識し、何から取りかかるべきか、何をやらないべきかを明確にして活動していきたいです。 営業プランの見直しと今後の戦略は? 毎期ごとに半期の営業プランを作成していますが、ゴールを半年後に設定する短期的な営業プランに加え、中長期を見据えた場合にどのように実績のトレンドを変えていくか、そのために今期で何をする必要があるかを今後考慮していきたいと思います。

データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

アカウンティング入門

会計視点で読み解く戦略のヒント

講座で得た発見は? 今回のアカウンティング講座を受講し、P/LやB/Sの読み解き方を学んだ中で、自社ブランドの強みと弱みを把握し、その強みをいかに伸ばして競争力を高めるかという全体像の重要性を改めて感じました。 資産計算の流れは? 前回の振り返りでも述べた通り、環境関連部署に所属していることから、カーボンニュートの取り組みに対して設備投資する際、対象資産を減価償却法に基づいて各期ごとに計算し、P/Lに計上する方法について正確な確認を行いたいと考えています。その上で、計算結果をB/Sに反映させ、そこから財務諸表を作成して適切な経営戦略を検討することに意欲を感じました。 戦略投資は適切? また、過去のデータを含めた自部署のP/LをB/S分析の結果をもとに年間の設備投資計画として立て、その計画を最終的にB/Sに反映させることで、戦略が適切で健全であるか自ら確認できた際に、会社へ報告して実行に移すことを目指したいと思います。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

データ・アナリティクス入門

比較で拓く新たな視点

比較の価値って? 分析の際、最初に比較の視点が重要であると実感しました。私自身、比較に対して苦手意識がありましたが、実務を通して比較分析を実施するうちに、他者の意見が新たな視点を与えてくれることを学び、自分以外の考えを取り入れる意義を改めて認識しました。 情報分析の秘訣は? また、上司から課題解決のための情報分析を依頼されたときのプロセスも振り返りました。まず、分析の目的を明確にし、次に何と比較するかを検討します。データが少ない場合は割合で表し、表を作成した上で適切なグラフによって視覚的に表現します。その結果を客観的に評価し、必要であればさらに深堀りした分析を行うという流れです。 視点の工夫は? 最後の課題では、男女別や地域別といった切り口での分析が有効であると感じました。ただ、これらの視点に気づくまでに時間差が生じてしまいました。あらかじめスムーズにアイデアが浮かぶようになるためのコツがあれば、ぜひ教えていただきたいです。

クリティカルシンキング入門

問いと理由で進む新たな未来

誰の視点を意識する? WEEK1の振り返りを通じて、今後の自分のアクションにつながる目標を整理しました。これまで、考えやすい部分からまず「解決策」を検討してしまう傾向がありましたが、本来は「誰の視点で」「何のために」「どんな問いを立てるか」というプロセスを意識することが大切だと実感しています。今後は、解決策に至った理由を振り返る癖をつけ、一人では気づかない点も見逃さないよう努めます。 なぜ数値に注目する? また、毎週のレポート作成では、KPIの変化に対して「なぜ増えた/減ったのか」という仮説を3つ以上挙げることで、データに基づいた分析を深めることを目指します。さらに、会議で議論が停滞した場合は、「今日決めるべきこと」を整理して提示することで、議論を前に進める工夫を行います。 どう説明を伝える? 提案資料を作成する際には、必ず「施策→狙い→期待成果」の流れを明確にし、読み手にわかりやすい形で説明することを心がけています。

データ・アナリティクス入門

市場のヒントがここに!実践分析術

何で3C分析が有効? 今回の授業を通じて、市場や企業、競合の現状把握に役立つ3C分析の有用性を改めて実感しました。顧客のニーズや市場の動向、さらに自社の強み・弱みを整理する過程は、企業戦略を考える上で非常に参考になりました。 どう活かす4P分析? また、4P分析の学習を通して、製品の特性、価格設定、流通戦略、プロモーションの各要素がどのように組み合わさってマーケティング戦略が形成されるか、具体的に理解することができました。各事例をもとに、直接実務に活かせる観点で考察を進める姿勢は、今後の業務改善や新たな戦略立案に大いに役立つと感じました。 なぜ視野を広く? さらに、分析手法を検討する際には必ずしも自社内のルールに固執せず、他社のプロセスや市場全体の流れを含めた幅広い視点で情報収集を行うことの重要性も再認識しました。今後も今回の学びを実際の問題解決に積極的に応用し、より実践的な戦略構築に努めていきたいと思います。

データ・アナリティクス入門

アウトプットが照らす分析の道

データ収集時の注意点は? データ収集の段階で、最終的なアウトプットのイメージを明確に持つことが非常に大切だと改めて実感しました。演習を通じ、ただ漠然とデータを分析するのではなく、何を理解したいのか、どのような知見が得られるのかを意識しながら分析する必要があると感じています。 仮説の重要性は? これまでは業務上、データを加工して気になる情報が見つかればその伝え方を考えるという流れで進めていたため、分析を行う際には、まず仮説とアウトプットのイメージを持つことが質の向上に大きな差を生むのだと実感しました。 質向上への取り組みは? この経験をもとに、売上の変動分析においても、従来の手当たり次第の手法から脱却し、しっかりとしたアウトプットのイメージを持って取り組んでいきたいと考えています。また、以前「分析がわかりにくい」という指摘を受けたこともあり、優れた分析手法を取り入れることで、さらなる質の向上を目指します。

「分析 × 流れ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right