データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

データ分析で見つける新たな学びの価値

代表値の意義って? 代表値は、大量のデータを分析して大まかな実態を把握する際に重要です。特に、単純平均を用いるときには標準偏差も算出し、データのばらつきを確認することで、異常なデータを見つけることができます。グラフを比較・解釈し、仮説を立てることで、次の分析段階の方向性が明確になるのもポイントです。また、幾何平均は成長率や変化率の平均を求める際に用いることが適しています。 ターゲットをどう掴む? 競合や生活者ニーズを把握するため、製品購入者の年収や性別、年代、世帯人数を抽出します。そして、各製品のターゲットや、どのような生活者にどの製品が刺さるのかを理解するために、膨大な製品数から単純平均と標準偏差を用いて概要を捉えた後、詳細なデータ分析を行います。 販売戦略は何が鍵? さらに、注力ブランドの選定では、プロモーションや割引なしで販売好調な製品は、商品力が高いと考えられるため、これらを拡充したいと考えます。販売好調な製品の優先順位を決める際にも、幾何平均を基準の一つにすることが考えられます。 分析の流れは? 全体を把握するためには、まず代表値を算出し、その際にデータの散らばりを確認します。その後、詳細のデータを分析します。データ分析は「何を見たいのか」により比較対象が異なるため、この点を整理しつつ仮説を立てることが大切です。この流れを習慣化することが望ましいです。

クリティカルシンキング入門

未来を創るオンライン学習体験

自分の考えに疑問は? 情報を慎重に読み取り、形式や流れにとらわれることなく、最初に出した自分の回答に疑いをかけることが重要です。特に、どこに重点を置くべきかによってアプローチ方法が異なることがあります。一つの点にだけ集中してしまうと見落としが発生するため、広い視野を持ち、多様な視点からゼロベースで考えることが求められます。 どこを改善すべき? 新しいコンテンツの開発や新オペレーションの考案に際して、前回のコンテンツ実施時のアンケートを分析し、次回への改善点を見つけます。この際、見えたものをそのまま受け取るのではなく、多様な視点から分析を行い、売上を伸ばすためにどこに注目すべきかを考えます。お客様の声や運営スタイル、人件費など、幅広い視点からの観察と熟考がアプローチ方法に影響を及ぼします。 どんなデータに注目? これまで、グラフ上で下回っている部分に注目して改善を試みてきましたが、さらなる成長の可能性にも目を向けていきたいと考えています。異なる特性を持つデータを比較することで、新たな発見が生まれる可能性があるため、目の前のデータだけでなく、それに関連するデータにも焦点を当て、イシューを特定することが求められます。また、様々な視点からの意見が新たな気づきをもたらすため、自分一人で考えるのではなく、ミーティングやデイリーの引継ぎ時間を活用して意見を共有し合うようにしたいです。

戦略思考入門

多様な意見を取り入れつつ、自社の価値観を貫く方法

柔軟な思考をどう育む? 戦略を立てる上では、思考様式やツール(フレームワーク)の知識を基礎としながらも、多くの知識と他者の多様な考えに触れることで得られる柔軟な思考や発想が重要だという点が印象的でした。しかし、一方で、それらの多くの知識が逆に足かせとなったり、他者の考え方から悪影響を受けないように、自社の経営方針や価値観を判断の拠り所とすることも常に意識する必要があると感じました。 情報収集と分析のポイントは? 今週の学習内容とは少し異なりますが、事業計画の策定においては、できる限り多くの情報を収集し分析することが求められます。その際、「①自己の都合の良いように解釈したり、拡大解釈しない」ということと、情報や分析結果を基に戦略を立案する際に「②自社のMVV(ミッション・ビジョン・バリュー)との整合を取る」ということが重要だと思います。 まず、①については、自身の出した結論に対する論理を明文化して、他者に意見を求めるという流れを基本的なプロセスとして進めることが肝要です。 MVVと戦略の整合性を保つには? 次に、②については、MVVを日頃から目に触れる場所に掲示したり、作成するドキュメントに盛り込むことが有効です。また、レビューチェックシートにチェック項目として設けるのも良い方法かもしれません。これにより、常に自社の価値観や目標を意識した戦略策定が可能となります。

データ・アナリティクス入門

論理と実践で掴む成長

どうして論理で考える? 問題解決にあたっては、「what」「where」「why」「how」という順序に沿い、論理的な流れを重視することが大切です。各段階で仮説を立て、安易な原因の特定や根拠のない解決策にならないよう意識しています。 仮説の深掘り大事? また、仮説設定や要素の分解の際は、必要に応じて3C(Customer/Competitor/Company)や4P(Product/Price/Place/Promotion)といった手法を用い、偏らない分析・比較を心がけています。これにより、より具体的で納得できる解決策を導き出すことが可能になります。 どうやって迅速判断? 日々の業務では、あらゆる意思決定が求められる中、根拠と基準を明確にし、迅速に判断するスキルが不可欠です。社内外で目にする数字やデータに違和感や異常を感じた際は、すぐに原因分析を行い、問題解決に向けた対策に着手することが求められています。特に、決算報告や業績予想の資料作成、報告時には、正確な原因把握と的確な対策が必要となります。 資格取得どう進む? そのため、改めて決算書の読み方や作成方法を学ぶ必要性を感じています。既に購入している教科書や問題集に着手し、日商簿記の資格取得を目標に、継続的に学習を進めています。帰任後すぐに資格を取得するという目標を掲げ、計画的に勉強を進めていく予定です。

データ・アナリティクス入門

手を動かす実践学習の軌跡

分析手法をどう感じる? 受講を通して、問題解決プロセスに沿いながら分析を進める手法が非常に印象的でした。目的や仮説の根拠となるデータの見せ方が多様で、読み手や主張によって使い分ける工夫が大切であると実感しました。また、比較を行う際に明確な軸を定めることで、より論理的な分析が可能になる点も学びました。 成果をどう評価する? 受講生の皆さんのアウトプットの質の高さも印象に残りました。各自が多角的に課題を分析し、仕事にどう反映させるかを常に意識している姿が刺激的でした。グラフの作成方法やデータ加工、プレゼンテーション資料の作成など、実際に手を動かしながら進める重要性を改めて認識することができました。学んだ内容を自分なりにアウトプットすることで、知識が確かなスキルへと結びつくと感じました。 業務改善のカギは? また、既存業務にデータ分析の機会が少ない中、自ら課題を見つけ改善していくためのプロセスを学んだことも大きな収穫です。まず、チーム内で起こり得る問題やその可能性を探り、起こっている原因を特定するために必要なデータを洗い出します。続いて、データの収集・加工を行い、仮定が正しいか、また改善のインパクトがあるかを確認しながら分析を繰り返す。このプロセスを上司やメンバーとレビューすることで、納得感のある提案へと昇華させる流れは、今後の業務改善に大いに役立つと感じています。

クリティカルシンキング入門

エクセルで広がる!学びの新発見

エクセルとグラフの効果は? エクセルシートの活用方法について学んだことは、非常に奥が深く、多くの発見がありました。特に、データの見える化をグラフで実現することは非常に参考になりました。また、データ分析で迷ったときには、まずはデータを分解してみることが重要であるという点も、教材を通じて反省しました。後半のMECEに関する学びでは、経営戦略のツールとしての利用に関して、どのステップで役立つのか、構成要素を分解して考える視点が大変有益でした。 分析視点の工夫は? これらの学びを基に、大学の在学生や入学生の分析に活用してみたいと考えています。特に、入試ごとの分析視点が不十分であったため、同僚とともにいくつかの切り口を考え、層別や変数の分解を試みるつもりです。また、プロセスを分解し、ペルソナを設定することで、大学進学を考えた段階から最終的な進路決定に至るまでの過程の分析を試みたいです。 広報と全体の関係は? さらに、「全体を定義する」ということの重要性についても意識が深まりました。これまでは、学生がオープンキャンパスに参加し、その後出願するという単純な流れを考えていましたが、実際には学生が興味を持ち始めるタイミングで、どのように大学の認知度や魅力を伝えるかが重要だと感じました。そのため、進学先を決定するプロセスにおける効果的な広報活動の必要性を強く感じています。

クリティカルシンキング入門

イシューを見抜く成長の軌跡

どうやってイシューを特定する? 進め方としては、まず答えを出すべき問い、すなわちイシューを明確に特定します。その後、論理の枠組みを考え、主張を適切な根拠で支えるという基本の流れを踏むことが重要です。作業を進める中で、イシューを常に意識しながら進めるべきであり、過去にはイシューから逸脱したまま次の作業に移ってしまった経験があり、今後はその点の改善が求められます。 なぜ顧客評価に課題が? また、顧客評価で問題が生じた場合や戦略がうまくいかない状況では、単なる対症療法にとどまらず、根本的な問題が何であるかを特定し、メンバー間で共有することが必要です。特に、エンジニアの方々と仕事をする際には、視点が異なることが多いため、まずは共通してイシューを明確にし、現在の状況と今後の方向性をしっかり合わせることが大切だと感じました。 どうやって情報整理をする? さらに、各顧客ごとにイシューを特定し、現状理解のためにMECEやデータ分析を実施すること、そして顧客との面談前や会議での参加者間のゴール設定が求められます。資料作成の際は、まずデータを整理し、その後報告資料の構成を考え、スライドごとのメッセージを作成していくという流れを守り、順番を変えないように進めることが重要です。会議中もイシューから逸脱しない進行を意識することで、解決策へと着実に導くことができると感じました。

データ・アナリティクス入門

課題発見!データが導くヒント

データ分析は何に使う? まず、データ分析は単なる数値の羅列に意味を見出すのではなく、特定の問題を解決するために行うものです。いきなりあらゆるデータを収集しても、どの部分に着目すべきかがわからず、効果的な結果に結びつきにくいでしょう。したがって、まずは問題を明確に定義し、大まかな分析から始め、論理ツリーやフローチャートなどを活用してデータを分解します。この際、解決策に結びつくような意味のある分け方を意識し、比較対象を明確にすることが大切です。 問題解決はどう進む? また、問題解決のプロセスにおいては、「何が問題か(What)」、「どこに原因があるか(Where)」、「なぜその原因が生じたのか(Why)」、「どうすれば解決できるか(How)」という4つのステップに沿って、仮説をいくつか立てながら、検証を進めることが求められます。分析の際は、複数の仮説を網羅的に洗い出し、分析フレームワーク(3Cや4P、5フォース、PESTなど)を活用するのが有効です。例えば、ある期間の売上減少については、内部要因(販売店の比率、広告費、性年代別の購入者率、リピート率など)と外部要因(気温、感染症の流行、訪日外国人の数など)の双方を収集・比較し、ギャップが大きい部分に絞って深堀りを行います。最終的には、複数の解決策を挙げ、判断軸に基づいて最適な対策を選定するという流れになります。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

戦略思考入門

戦略思考で未来を切り拓く秘訣

戦略思考を深掘りするには? 戦略思考について改めて考えてみました。具体的なフレームワークを用いて書き出してはいないのですが、一部については無意識に頭の中で実行していたようです。ですが、文字に起こすことにより、自分の理解を深め、より具体的な形にすることができました。 進捗確認のポイントは? 新規プロジェクトの立案だけでなく、進捗の確認の際にも、「ゴール確認→環境分析→捨てる勇気」といったプロセスを繰り返すことで、効率的かつ効果的な結果を得られると感じます。さらに、最新の動向に基づいた分析が必要だと考えています。マニュアルや慣習に依存しがちな面があるため、それにも注意を払いたいです。 自分の言葉は合ってる? また、他人の話を聞いてわかった気になるのではなく、自分の言葉でアウトプットすることも重要です。目標設定だけでなく、その目標に至る過程、特に「捨てられるものはないか」を意識することが肝心です。慣例的に行っていることが本当に必要なのか、利益が停滞していないか、しっかりと精査する必要があります。 変化にどう対応する? さらに、時代の流れを敏感に捉え、情報収集を怠らないようにし、過去の成功体験に囚われない姿勢が重要です。自社や自分の強みを振り返り、差別化を意識し続けることが求められます。

「分析 × 流れ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right