戦略思考入門

理想のリーダー像への戦略的挑戦

何を達成する? これまでの学習を振り返る演習を行いました。この機会に、これからの自分の理想像を改めて描き直し、その中でシンプルで一貫性のあるリーダーを目指したいと思いました。戦略思考の基礎を再度学び直し、目的を明確にして、それを達成するための最短ルートを設計することの重要性を再認識しました。特に「何を達成したいのか」、「いつまでに達成したいのか」、「なぜそれが必要なのか」といった目的を具体的に言語化することが重要だと実感しました。また、利用可能なリソース、特に人材を最大限に活用することの必要性も理解を深めました。効率的なルートを設計して、より効果的に目標達成を目指したいと考えています。 戦略はどう見極める? 問題を俯瞰し、深掘りを繰り返して分析する意識を持ち続けたいと思います。全体の流れを確認し、そこからイシューを特定し、攻略法を戦略的に立てることを心がけています。イシューの解決から全体の解決に繋げる部分を構築し、その過程で戦略思考を活用していきたいと考えています。また、学んだフレームワークも活用し、規模の経済性を最大限活かせる方法を模索し続けたいです。 学びをどう実践する? フレームワーク活用の習慣化を進め、分析に必要な要素を素早くカテゴライズし、様々な課題に応用する技術を磨いていくつもりです。また、朝礼で学んだことを発表する場を活用し、学習内容のアウトプットを繰り返すことで、理解を深めたいと思っています。

データ・アナリティクス入門

数字とロジックで捉える課題解決

問題点の整理はどうする? GAILを通じて、問題点の洗い出しが不十分であると痛感しました。直面している課題や状況を明確に言語化することがまず必要であり、そのためには「あるべき姿」と「現状」とのギャップに着目して問題点を整理することが重要だと学びました。たとえば、「なぜ赤字なのか」「なぜ生徒が集まらないのか」といった問いから、まずは数字に基づいて優先的に解決すべき問題を特定し、次に具体的な解決策(how)を検討するプロセスが非常に参考になりました。 計画実績のギャップは何故? また、販売実績や利用状況の分析時には、「なぜ計画に対して実績が出ないのか」「目標に対して利用状況がどのように乖離しているのか」という問いを持つことはもちろん必須ですが、さらに、どの業態の顧客が利用しているのか、あるいは利用していないのかといった具体的な観点から問題を深掘りすることも大切だと感じました。いきなり解決策に飛びつくのではなく、what(現状把握)→where(問題箇所の特定)→why(原因の追究)→how(解決手法の検討)の流れを大切にすることが、問題解決への着実なアプローチだと考えています。 MECE活用は有効? さらに、問題解決プロセスをきちんと踏む上で、MECEの考え方は非常に有効であると実感しました。その一環として、ロジックツリーを活用しながら実績の分析を進める手法は、今後の業務にも積極的に取り入れていきたいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

クリティカルシンキング入門

魅せる資料と伝わる文章術

今回変更する振り返り文章 今回の学びは何? 今回は、メッセージを伝えやすいスライド作成とライティングの工夫について学びました。 スライド作りの秘訣は? まず、スライド作成では、視覚的に伝わるグラフを選び、分かりやすく作成することが重要です。また、フォントや色、アイコンはメッセージとの整合性を意識し、過剰な装飾を避けるようにします。さらに、視線の流れ(左から右、上から下)を意識して配置することで、読み手の負担を軽減できる点も大切です。文言や装飾に工夫を加えることで、視線を効果的に誘導し、メッセージをより明確に伝えることが可能です。 文章構成はどうする? 次に、ライティングにおいては、冒頭のタイトルやリード文にイメージが湧きやすい説明や読み進めたくなる情報を盛り込み、全体の構成に工夫を凝らすことが求められます。 社内共有はどうする? 特に、スライド作成の工夫は、上司や他部署への問い合わせ分析結果の共有や、顧客への説明資料の作成時に役立つと感じました。従来は情報の羅列に留まっていたため、視覚的な工夫を取り入れることで伝えたい内容がより効果的に伝わると実感しています。 惹きつけの工夫は? また、ライティングの工夫は、社内での事例共有や顧客向けマーケティングメールの作成にも活用できると感じています。特に冒頭部分のアイキャッチに工夫することで、読み手の興味を引きつける効果が高まると感じました。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

データ・アナリティクス入門

ロジックで拓く成長の一歩

何故手順を明確に? これまで「何となく」で進めていた問題解決のステップについて、今回あらためて「What, Where, Why, How」を意識する重要性を実感しました。手順を明確にすることで、全体の流れが整理され、取り組みがより効果的になったと感じます。 現状のギャップは? また、日常業務においてしばしば指摘されるように、「あるべき姿(目標)」と「現状」とのギャップが課題であるという考え方は、自分自身の問題発見力の不足を強く意識させる要因となっています。全体的な視点で課題を捉えたつもりでも、見えていない問題が存在する可能性があるため、ロジックツリーやMECEといったフレームワークの有用性を改めて認識しました。 遅れはどう取り戻す? 実際、現状では採用目標(ありたい姿)に対して採用実績が未達の状況です。今月である第3四半期が締まり、来月から第4四半期に入るため、これまでの遅れをどのように取り戻すかについて、ロジックツリーやMECEを活用して具体的な施策の検討に結びつけたいと考えています。 どんな課題に挑む? 具体的には、以下の点について課題を追求していきます。 ・母集団形成がうまくいっていないため、応募を阻害している要因や、求人票を見ても応募に至らない理由の究明 ・先月と比べて書類選考通過率が大幅に低下しているため、不合格となる要因の分析 ・面接実施率を向上させるための施策の検討

データ・アナリティクス入門

発見!真の問題に迫るヒント

日常で何が見落とされる? 業務での問題解決のステップは重要であると理解しているものの、日常業務がいつも通りに流れる中で、そもそも何が問題なのかが見落とされがちです。例えば、ある音楽スクールの2店舗目の集客が順調に進んでいた場合、特に問題点を見出すことなく、次の店舗展開に意識が向いてしまい、振り返りが不足している状況があると感じます。 どうやって問題を探す? 一方で、問題が明確に特定できれば、対処方法も比較的容易に選択できることを学びました。以前からロジックツリーやMECEといったフレームワークを意識しながら分析を行い、常に多角的な視点で事象を捉えるよう努めています。 共有で理想を築く? また、あるべき姿を共有し、職場でその実現に向けた方法を進めていくことが重要だと考えています。海外事業では「売上が悪い」という表面的な現象にとらわれがちですが、実際の本質は、製品戦略が正しいか、顧客の要求を満たす製品開発が行われているか、他社の動向が適切に把握されているか、販売チャネルが最適かといった、いくつかの側面から検証することで初めて見えてくるのではないかと感じています。 このように、「そもそもこれが問題なのか?」という視点を持ち、新たな切り口で問題を発見して改善していくことが、業務改善や新規事業の展開につながると考えています。その視点をどのように養うか、今後職場で意見を共有しながら進めていきたいと思います。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

クリティカルシンキング入門

データ分析で得る新たな視点と知見

分解の効果は何? データを分解することで、より多くの知見を得られることを実感しました。特に、ある特徴が一つの切り口で現れた際に、それだけで答えを決めつけると他の観点から見ると誤りであることがあることに新鮮さを覚えました。答えが見つかったように見えても、それはあくまで仮説であり、しっかりと検証することが重要だと感じました。 現状をどう把握する? ITシステム品質保証チームの今後の戦略を立てるにあたり、まず現状を把握したいと思います。そのために、システムの品質評価を分解し、現状に対する課題を見つけ、知見を得たいと考えています。具体的には、ユーザーが5段階で評価したデータの平均値であるNPS平均を分解していきます。 どの切り口が有効? まず、MECEを意識しながら様々な切り口を考えます。層別分解としては、ユーザーの属性別や単価別を検討します。変数分解としては、評価の平均は合計値を評価数で割ることで得られるため、5段階各評価ごとの合計をグラフ化します。また、評価数の分布や1ユーザーあたりの評価回数の層を作り、さらに分解して考察します。プロセス分解としては、ユーザーが新規登録してからサービスを利用し終えるまでの流れをプロセスに分けて、各段階での評価がどの程度であるかを分析していきます。 検証の重要性は? 以上のように、さまざまな観点から分解することで知見を得ることを目指します。

データ・アナリティクス入門

なぜ?を突き詰める実践の知恵

原因の深掘りは? トヨタ式「5 Why」を活用し、表面的な原因だけにとどまらず根本原因へと掘り下げる手法が、知識としてだけでなく実践の糸口となった点が印象に残りました。 複数策はどう? また、解決策の検討では、一案に固執せず複数の選択肢を洗い出し、データや定性情報をもとに実現可能性・効果・コストを比較するプロセスがとても参考になりました。さらに、A/Bテストを活用することで条件を統一しながら柔軟に施策を検証していく方法も有効だと感じました。 本質を見抜く? 総合演習を通じて、データを多角的な視点―性別や年齢、曜日、クラスレベルなど―で分解し分析することで、課題の本質を見出す大切さを学びました。アンケート結果と生徒のコメントから、具体的な不満点が明らかになり、問題解決の手がかりをつかむことができました。 なぜを追求する? また、複数の仮説を立て「なぜ?」を繰り返し問うことで、定量データと現場感覚を両立させたアプローチの重要性を実感しました。目的を明確にし、何を改善するのかを起点に指標や手法を選ぶ姿勢は、実際の改善策を実行する上での大きな指針となりました。 具体策は何? 特に、社員の離職率改善を例に、採用からオンボーディング、定着施策までの各段階における仮説立案と検証の流れを学ぶことで、短期・中期・長期のステップで具体的なアクションプランを策定する手法が実践的であると感じました。
AIコーチング導線バナー

「分析 × 流れ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right