データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

ファネルで実感!変わる営業プロセス

ファネルをどう理解する? マーケティングのプロセスにおいて、いくつかのフレームワークを学ぶことができました。特にファネル分析は、従来は漠然としたイメージを持っていただけでしたが、具体的な用途や目的を明確に理解することができ、今後の活動に大いに活用していきたいと感じました。 顧客アプローチはどう? 例えば、営業対象の顧客に対してどのようなアプローチで認知から提案に至るまでの流れを作り出しているのか、また各段階でどの程度の確率で次のステップへ進めているのかを分析することで、自身の営業プロセスを改善できると考えました。 データ記録は有効? さらに、SalesForceなどを活用して自分の営業プロセスを各ステップごとに記録し、進捗率や最終的な受注率をデータとして明確に把握することが重要だと認識しました。このデータを基に、積極的に営業すべき顧客を見極め、効率的な営業活動につなげていきたいと思います。

クリティカルシンキング入門

イシューで問題解決の道筋を明確に!

問いはどう考える? まず、重要なのは問い(イシュー)を立てることです。この問いは具体的であり、疑問文の形であるべきです。常に問いを考え続けることが求められます。たとえば、南守島のケースでは、データを様々な切り口で分析し、課題を特定し、その解決策を出すという一連の流れを理解しました。 イシューをどう整理する? 議論が多岐にわたると、イシューを見失うことがあります。そのため、一貫してイシューを意識するのが重要です。議事録のヘッダーにイシューを入れることで、会議の開始時にメンバー全員で確認し、共通の認識を持つように心がけると良いでしょう。 会議はなぜ確認する? 会議の最初には、イシューを全員で確認します。また、議論が逸れた場合には、軌道修正のために再度イシューを確認することが必要です。イシューが複数ある場合には、それを構造的に分解し、それぞれ個別に議論する場を設けると効果的です。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。

データ・アナリティクス入門

何から手をつける?4STEPで解決

何から手をつける? たくさんの問題に直面した場合、何から手をつけるべきか悩むことがよくあります。そのような状況で、今回学習した「問題解決のステップ」がとても印象に残りました。具体的には、「what」で直面している課題や状況を明確にし、「where」で問題の個所を絞り込み、「why」で原因をしっかり分析し、最後に「how」で原因に応じた有効な解決策を考えるという流れです。 どう整理して進む? このステップを活用することで、目についた情報に振り回されて時間がかかってしまったり、都合の良い情報ばかりを集めて「決め打ち」に陥ったりするリスクを回避できると感じました。今後、問題に直面したときは、まず「what」で問題の本質を把握し、次に「where」「why」「how」の順で整理していくことで、よりロジカルに問題解決に取り組んでいきたいと思います。

データ・アナリティクス入門

データで切り拓く学びへの一歩

ライブ授業で何を得た? ライブ授業に参加して、データ分析の必要性を改めて認識しました。普段はデータを扱う機会が少ないのですが、分析を日常的に行っている方々から手法を学ぶことで、非常に参考になりました。また、ある設問を通じて、固定観念にとらわれず情報から直接課題を読み解く重要性を実感することができました。 困難にどう対応する? 問題や困難な状況に直面した際は、データをしっかりと集め、論理的に順序立てて分析する手法が重要であると学びました。これまで名刺の発注から納品までの流れは大まかにしか把握できていなかったのですが、今後は過去の発注履歴に発注日を記録し、統計的に納品までの期間を明らかにしていく予定です。全体の名刺作成フローを見直し、どこにボトルネックがあるのかを把握した上で、その原因となる要因を具体的なデータをもとに分析していきたいと感じています。

データ・アナリティクス入門

フレームワークで拓く学びの扉

基本の振り返りは? 今週は、前回と同様に基本的な考え方をベースにした振り返り学習が印象的でした。特に、3Cや4Pの視点から仮説を立て、問題の定義を明確にする流れを重視する点が印象に残りました。 フレームワークの意義は? 授業では、課題解決のためにはフレームワークを活用し、定量的な情報に基づいた分析が重要であることを再認識しました。日々変化する業務の中で、分析活動が新たな気づきに繋がると感じました。認知バイアスや慣習により問題点に気づけなかったり、正しく認識できない場合もあるため、フレームワークによる抜け漏れのない仮説検証が課題解決に不可欠だと考えています。 課題の見直しは? また、今週の課題に関して、P4におけるアンケート結果や初級・中級クラスの充足度を踏まえ、どのような課題が存在するかを検討することが大切だと感じました。

クリティカルシンキング入門

日々の反省が育む未来戦略

なぜ毎日の反復が必要? クリシンを実践するためには、日々の繰り返しが欠かせないと改めて感じました。特に、「考える前に考える」姿勢を意識することで、自分の思考の癖を認識し、楽な方向へ流れてしまわないように心がけることが大切だと思います。 どう戦略的に考える? また、戦略的に考え、現状や未来に向けた施策を検討するために、適切に分解し、様々な観点から数値を分析して仮説を持つことが重要です。このプロセスを繰り返し続けることで、着実な成長が見込めると感じています。 どう差別化を図る? そして、AIの存在がある現代では、自分たちのコンテンツをどのように差別化するかが大きな勝負どころだと思います。まずは現状を把握し、将来に向けた戦略を立てることから始め、取れる施策について仮説を持ちながら振り返るフィードバックを重ねていきたいです。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

データ・アナリティクス入門

データ分析をもっと身近に感じよう

比較分析の考え方とは? 分析とは比較であるという考え方には改めて納得しました。特にビジネスの現場では、目的に応じて分析のアウトプットが変わるため、前提条件の確認を怠らないよう心がけたいと思います。 データ分析の意識法は? 日常業務でデータに触れる機会が多いですが、まずは仮説や問いを立て、目的に沿った分析を意識したいです。データ分析自体を目的とせず、次の提案につながるアウトプットを目指します。 仮説を立てる重要性について 正しい仮説や問いを立てるためには、現状把握や周りとの意見交換を徹底し、怠らないようにします。ビジネスのゴールから逆算してデータ分析を行い、常に目的を忘れないようにします。また、データの整理や可視化についても学び、分析の全体的な流れをスムーズに進められるようにしていきたいです。

データ・アナリティクス入門

実践で知るデータ分析の極意

振り返りの授業内容は? 今週は、これまでの学びを総合的に振り返る機会となりました。ライブ授業の録画を視聴し、講師や参加者の意見を聞きながら、実践的な課題に取り組む中で、分析の基本的な考え方や手順をストーリーとして学ぶことができました。最初に何をするのか、どのような課題に着目するのか、データの収集方法や加工の仕方、そしてどのように結論に結びつけるのか、という流れが非常に分かりやすかったです。 比較考察ってどう考える? また、社内にある商品の魅力度や売上の既存データを単独で捉えるのではなく、何らかの基準と比較しながら考察する重要性を再認識しました。問題の要因分析においては、一面的な意見に頼らず、ほかにどのような可能性があるのかを自分なりに掘り下げてみる姿勢が大切だと感じました。

「分析 × 流れ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right