データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

クリティカルシンキング入門

数字の背後にある真実を解き明かす方法

数字の背後に何を見いだす? 数字を見る際には、単なる数値を追うのではなく、その背後にどのような事実を見いだしたいかを考え、仮説を立てて分析することが重要です。データを収集する際には、手元にある情報だけでは偏りが出る可能性を念頭に置き、多様な視点から情報を捉えることを心掛けるべきです。 データ分解の鍵は? データを分解する際には、「いつ」「誰が」「どのように」という観点を含め、網羅的に考えることが必要です。そして、本当にその推論が正しいのか、さらなる傾向を2、3考えてみることも重要です。分解して何も見つからなくても、それは失敗ではありません。切り口が不明確な場合は、まず分解を試み、それでわからなかったら特定の傾向がないことを確認することが意味を持ちます。 売上増減の要因は? 売上の増減を分析するときは、顧客や商品ごとに要因を探り、傾向を把握して未来の施策に活かします。過去の傾向に従うだけでなく、今あるデータを新たな視点から見直し、「本当にそうか?」と常に疑問を持ちながら進めることが求められます。 他組織の施策も見直してみますか? 自組織の施策と売上推移を振り返る際には、数値をグラフ化して新たな観点がないかを再考します。他組織の施策や売上推移についても、提示されている視点のみに依存せず、仮説をもって直接問いかけ、新たな傾向を探ります。うまくいっていない事例がある場合は、その要因をチームメンバーとともに分解の視点で考察し、どのように対処すべきかを話し合います。

クリティカルシンキング入門

数字で導く!分析の新たな視点

データ加工で全体像を把握するには? データを加工する際には、与えられた情報をそのまま受け取るのではなく、全体像を把握するために必要な項目を追加することが重要です。単に生の数値を羅列するのではなく、表として整理することで、様々な気づきを得ることができます。 グラフ化で得られる洞察とは? また、グラフ化する際には、数値をどのように区切るかが得られる解釈に大きな影響を与えます。どのように分ければ、より良い気づきを得られるかを意識しながら数字を整理することが求められます。グラフ化はあくまで手段であり、そこから得られる洞察を基に仮説を立て、実際の行動に結びつけて改善を図ることが目的です。 傾向が見つからないときの価値は? さらに、数字を分解してグラフ化した結果、傾向が見つからない場合もありますが、それは失敗ではありません。むしろ、傾向がないことが判明したこと自体に価値があります。 私はソフトウェアエンジニアなので、数字を分析する作業はあまり多くありません。しかし、例えばチームのミーティング時間を削減する際、いつ誰がどれだけの時間をミーティングに費やしているのかを分析するために、このような方法を活用できると考えました。 分析作業の目的をどう意識する? 分析作業に取り組む際、つい情報をまとめることが目的になりがちです。しかし、「何のための分析作業なのか?」、「仮説を得るためにはどのようにまとめるべきか?」といったことを常に考えながら、分析作業を進めたいと思います。

データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

アカウンティング入門

B/Sをブロックで読む新しい視点

B/Sの読解スキルをどう活かす? B/Sから会社のビジネスが読み取れるとともに、それがどのように数値として現れるかを学べました。特に重要だと感じたのは、その会社のイメージを持ちながら読み取ることの大切さです。また、B/Sを「5つのブロックに分けてみる」という読み方をすることで、考え方が散らかることなく確認できることが分かりました。 どの視点でB/Sを読むべきか? 会社ごとにB/Sの現れ方は異なりますが、「全体像を掴む」、「お金を有効に活用しているか」、「倒産のリスクは高いのか」という視点はどの会社にも当てはまるため、これからもその視点で確認していきたいと思います。 倒産リスクをどうキャッチする? 自分の仕事での活用の前に、まだ正しく読めているか不安が残るため、まずはウェブから拾える情報を基にB/Sを読んでみようと思います。その理解が正しいことを確認したら、自社に関連する情報を入手し、自分の見解を加えてデータとして保管し、社内関係部門と共有したいと考えています。主な目的は取引先の倒産リスクを早期にキャッチすることです。 カネ研動画で理解を深める? B/Sについてはまだ学びが必要だと感じているため、動画を再度確認して理解を深めるつもりです。特にカネ研の動画が分かりやすいので、これを主に利用して確認します。さらに、ウェブから得た情報を読み、自分なりの見解を持ち、その見解も含めて正しいかどうかを社内の専門部門に協力してもらいながら理解度をチェックします。

クリティカルシンキング入門

問いの力で未来を切り拓く

講座学びはどう活かす? 今までの講座で学んできたことが、今回の講座の軸になると感じました。他の講座では、切り口の考え方、データの読み解き方、そして言葉や資料での伝え方を学んできました。しかし、これらを組み合わせるだけでは、でき上がった答えが素晴らしいものであっても、間違いになりかねないと思いました。重要なのは、現在の状況を踏まえたうえで、どのような答えを出したいかを「具体的な問い」の形で先に設定することです。これにより、無関係な議論を避け、方向性の合った議論や分析を行うことができます。 問いの質を高めるには? この考え方は、新商品やリニューアルの方向性について議論する際に非常に役立ちます。以前は「●●はどうか」という程度の問いしか出せませんでしたが、今後はより本質的で具体的な問いに落とし込めるようにしたいと考えています。「この状況において考えるべきこと」を常に意識し、それを自分で考え、周りにも示していけるようになりたいです。 実践ステップはどうする? 業務に対しては、次の順序で実施していきます。まず、議論を始める前に「問い」を考えます。次に、皆で「問い」を出し合い、どこに狙いを定めて議論をするかを決めます。そして、解決したいこと、現在の状況、「問い」が繋がっているか、ズレていないかを確認します。「問い」に合った議論を行い、答えを導き出します。その後、「問いに合っているか」「解決策になっているか」を確認してから実行に移す、という流れを意識していきたいです。

クリティカルシンキング入門

イシューを明確化して成果を最大化する技法

課題発見のための具体的手法は? 本質的な課題を発見するためには、対象を分解し問題点を明らかにし、その対策を検討することが重要です。その際、グラフなどを使用して問題点を的確にあぶり出すことが効果的です。手当たり次第に検討するのではなく、焦点を絞ることが求められます。 イシューの重要性を理解 イシューを明らかにし、常に意識することも重要です。打合せなどでは、まずイシューの共通認識を持つことが必要です。これは基本的なことですが、実践するのは難しいです。打合せの目的(イシュー)を共通認識として持つことが不可欠です。 業務を進める上でも、まず自分の中でイシューを明確にし、それを持ち続けることが大切です。必要に応じてイシューを修正する際も、その目的を明確に意識し続けます。 他社データの活用法とは? また、同業他社や好きな会社のデータを見て分析し、自分の仕事に活用することができます。考えるための題材は自分の仕事以外にもたくさんあり、例えば同業他社の有価証券報告書などからも情報を得ることができます。 打合せでは、その目的(イシュー)を最初にアジェンダに記載し、全員が共通の認識を持てるよう確認することが重要です。また、新聞や書籍などのグラフに注目し、その場合に適したグラフを選ぶ視点を持つことも有益です。 さらに、新聞記事や自分の業務を進める上で、常に目的やイシューを意識しながらメモを取ることが有効です。これにより、意識的に課題や解決策に集中することができます。

クリティカルシンキング入門

見える化で共感を得るデータ活用法

クリティカルな思考を鍛えるには? クリティカルな思考の出発点は「問い~issue~」です。頭の使い方を鍛えるためには、考えやすいことや考えたいことに偏らず、自己満足で終わらないようにすることが重要です。そのためには、考えが主観的か客観的かを見分ける余裕を持つことが大切です。 データ解析で変化を起こすには? 考えていることを周囲に「見える化」するためには、定量データを精選し適切に分解して解像度を上げることが求められます。グラフの作成においては、種類、着色、表示方法に工夫を凝らし、手間を惜しまないことが必要です。これにより、周囲の共感やポジティブな変化が期待できます。 営業ライン業務での挑戦は? 長年勤めた教材制作・講師を中心とした業務から、2か月前に地域を管轄する営業ライン業務に異動しました。定性面に加えて定量面でもしっかり語れる力を鍛えたいと思っています。1on1や毎月・毎週の定例ミーティングから次年度計画策定に至るまで、数的状況を分解し、それを根拠に共感度の高いコミュニケーションを実現したいと考えています。 データで訴求力を高める方法は? 根拠や主張を明確に伝えるためのデータの見せ方を、経験と研鑽を重ねながら精度を上げていくことを目指しています。その際には、堅苦しい主観的な記載ではなく、見てわかりやすい客観的な記載を心掛けてプレゼンテーション資料を作成します。これにより、自身の訴求力を高め、周囲の同意を得られるよう努めていきたいと思っています。

クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

クリティカルシンキング入門

データ分析の意外な発見!新たな視点を持とう

数字分析で見落としはないか? 数字の分析を行う際には、単なる表面的な数字だけでなく、グラフ化することで視覚的に見やすくし、相手にも理解しやすくすることが重要です。さらに、グラフに1列追加することによって異なる結論を導き出すことができ、元のデータを再度検討することで、最初には見えなかった答えを見つけることも可能です。 事業計画に欠かせない視点とは? 分析においては、一つの傾向だけに満足せず、「本当にそうか」と自分に問いかける姿勢が大切です。特に事業計画を作成する際や収支計算、次年度予算に関しては、与えられた数字のみではなく、その背景をしっかりと分析して考えるように心がけたいと思います。また、プログラムに関連する学生や教員からのアンケートやフィードバックを受け取ったときも、それらをグラフ化して数値として表すだけでは不十分で、分類方法の再検討が必要です。 MECEをどう活用する? MECE(漏れなくダブりなく)を活用して、物事の意思決定において多角的に物事を分析することを心がけています。特に、MECEのプロセス分解を活用し、現在直面している意思決定を論理的に説明し、相手に納得してもらえるように取り組む予定です。 多様な視点で思考を深めるには? 自分の思考の傾向を理解し、常に多様な視点を意識した上で、一つの答えに満足しないように努めていきます。業務の中で特に事業計画の作成や収支計算の際には、これらの分析手法を積極的に活用していきたいと思います。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right