クリティカルシンキング入門

グラフで見る!データ視覚化の極意

グラフ化で情報処理を速くするには? 視覚化することの重要性を学びました。特に、グラフ化により情報の処理が速くなる点が印象的です。グラフを作成する際には以下のポイントを忘れないようにします。 まず、タイトルを工夫して、事実の実況中継にならないように一言加えることが大切です。また、単位や軸の原点を示し、フォントや色、矢印などで強調部分を表現します。ただし、アイコンを使用する際には視覚化の理解を促すものを選び、ノイズにならないよう注意します。 どんなグラフを選ぶべき? 自分が伝えたいこととグラフが合っているか、一目で理解してもらえるグラフの種類を選択することが重要です。また、メッセージに沿った情報配置にすることも大切です。そのため、「何となく」で資料を作成せず、データを丁寧に収集して、読んでもらえる、興味を持ってもらえるスライド作りを心がけます。 例えば、役員のスケジュールを分析する際、文章だけで結果を伝えるのではなく、グラフ化したスライドを挿入してみます。 良い文章の定義とは? 良い文章の定義としては、 - 目的が書かれている - 内容がしっかりしている - 読んでもらえる ことを意識し、文章作成の際のタイトルも事実の中継ではなく、アイキャッチを引くものを考えて、丁寧に書いてみます。 また、色々なスライドやグラフに触れてみて、データをグラフ化する際に棒グラフ、円グラフ、折れ線グラフそれぞれが得意とするデータを理解します。 視覚化の習慣をどうつける? 最後に、とにかくグラフを作ってみて、文字化で止めないで視覚化する習慣をつけることが大切です。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

戦略思考入門

リソースを活用した効果的な学びの秘訣

リソースの投入はどう? リソースは限られているため、最も効果的な場所にリソースを投入する必要があります。そのためには、優先順位を明確にし、判断基準をしっかり持つことが重要です。事例で学んだROI(投資した資本に対して得られる利益の割合)は非常に参考になりました。また、手元に判断材料がない場合には、仮説思考を活用して検討を進めることも有効です。異なるパターンを考慮し、ポジティブ、ネガティブの両面から設定を検討するのもよい方法です。複数の視点を持って考えることは、ビジネスの複雑な状況において必要不可欠です。 ROI評価、改善は? 判断過程でROIが低い業務は、思い切って見直すべきです。戦略においてはメリハリをつけて判断し、数値に基づいて決断することが求められます。 業務の見直しは? 自身の業務を見直す際、費用対効果を考えてみます。時給9千円に見合っているかどうかも考慮します。 業務改善の具体策は? - **帳票管理** 帳票の整合性確認に時間がかかっているため、これを自動化することを検討します。 - **報告資料** 報告内容が多く、時間がかかるため、上司が使わないであろう報告内容は簡略化します。 - **新規顧客獲得活動** マッチングプラットフォームを用いた活動で受注率が低いため、自組織の強みを活かした案件にシフトし、紹介活動に力を入れます。 - **活動行動ログ** より良い目標に向かうために活動の目標を明確にし、それに基づくデータを再確認します。正しい分析を行うために、ゴミデータの除去も意識します。

クリティカルシンキング入門

ピラミッド・ストラクチャーで説得力アップ!

ピラミッド・ストラクチャーの効果とは? ピラミッド・ストラクチャーの活用により、情報を相手に伝えやすくなることを学びました。この方法を使うことで、自分自身でも論理の妥当性をチェックしやすくなり、説得力のある内容に仕上げることができます。また、「隠れた主語」がないかを確認する視点を持つことが重要だと感じました。日常生活でも主語や述語は意識しているつもりですが、テキストコミュニケーションでは特に「隠れた主語」を意識できていないことに気づきました。さらに、複数の具体をまとめる力が不足していると感じ、演習を通してこの点を克服する必要があると実感しました。「クリティカル・シンキング入門」からさらなる成長を期待しています。 データ分析での工夫は? 私の職務は、データ分析を通じて事実を伝え、示唆を出すことです。特に事業部長への説明が多いため、準備の際にピラミッド・ストラクチャーで内容を整理することが有効だと感じました。また、私以外のチームメンバーが本社勤務であるため、チャットツールでのコミュニケーションが頻繁です。認識の齟齬を防ぎ、一度で伝えたいことが伝わるようになれば、コミュニケーションコストを削減できると考えています。 コミュニケーションコストをどう削減する? 会議の準備段階では、言いたいことをピラミッド・ストラクチャーでブレイクダウンして整理しています。また、チャットを送信する前には「隠れた主語」がないかを毎回チェックします。面倒に感じることもありますが、この作業の徹底が双方のコミュニケーションコストを削減することにつながると考え、実践を心がけています。

データ・アナリティクス入門

データ分析で見つけた新たな視点と仮説の立て方

データ分析の進歩を実感 これまでの実践演習のおかげか、ライブ授業の例題の際、自分が受講以前よりデータの着目ポイントがわかるようになったこと、仮説を複数出すことが怖くなくなっていたことに気付きました。また、ライブ授業の中で出てきた「やみくもに分析しない」という点も、性格上ハマりやすい沼だと思うので、優先順位を考えつつリソース配分を意識しながら分析したいと思います。 ディスカッションでの学び方とは? ディスカッション形式で例題を解くことで、人によってデータの見方や感じ方が違って面白かったです。一人でこっそり分析するよりも、複数人で話し合いながら進める重要性を感じ、実務でも活かそうと思いました。 新規事業におけるフレームワーク活用 新規事業を担当しており、これから多くの施策や企画を立ち上げる機会が増えると思うので、その際には効果的な施策を打ち出すために、問題解決のフレームワークを使って体系的に進めていきたいです。今回の講座で学んだ大きな収穫の一つは「振り返ることの重要性」です。グループワークを通して意見を交換し、その際に振り返りとして自分の考えをまとめる時間があったことが学びに繋がりました。施策を打った後も、その振り返りを必ず行い、次に活かせるようにしたいと考えています。 データをどのように活用すべき? 今後も引き続きデータ分析の講座や研修を積極的に受けたいです。実務レベルでは、常に仮説を持ち、複数の切り口からデータを分析・比較し、結果の検証を行うという順番を意識しています。一部のデータだけを見てすぐに判断しないように気を付けたいと思います。

クリティカルシンキング入門

反復トレーニングで磨く思考力

論理的思考を見直す? クリティカルシンキングの講座を振り返って、以下の内容を確認しました。クリティカルシンキングとは、答えを求めるべき問いに対して論理的に考え、その考えに誤りがないかチェックする姿勢のことです。この姿勢を知るだけでは不十分で、実際に「反復トレーニング」を繰り返す機会がないと、元の思考スタイルに戻ってしまいます。そのため、反復してトレーニングを続けざるを得ない状況を作ることが重要です。 反復訓練はどう? このトレーニングには、「知識のインプット」→「知識を使ったアウトプット」→「他者からのフィードバック」→「振り返り」→「知識のインプット」というサイクルを持続的に繰り返す必要があります。多様なバックグラウンドを持つ人々とのディスカッションは、自分を客観視する機会を提供し、思考の反復トレーニングの場ともなります。このように反復トレーニングを重ねることで、初めて成果につながる思考力が得られるのです。 仕事で活かせる? この考え方は、自分の仕事においても活かすことができます。例えば、ミーティングや上司への報告時に、自分の伝えたい内容をわかりやすく資料にまとめたり、自分の考えに間違いがないかチェックしたりするために役立ちます。 実践は何を示す? 具体的な実践としては、毎週担当している売場のPOSデータを分析し、自分の考えを反映した資料をわかりやすく作成、それをチームのメンバーや上司と共有するというサイクルを続けています。その際、フィードバックをもらい、考え方を共有し、次の仕事に活かすことで、成果を出すという流れを作り上げています。

クリティカルシンキング入門

グラフ選びで差がつく伝達力

伝えたい内容は? メッセージを意識したグラフ選びの重要性を強く感じています。グラフ作成が目的ではなく、伝えたいメッセージを正確に届けることが本質です。誤ったグラフ選びは、情報の読み取りを難しくし、本来伝えたい内容が伝わらなくなる恐れがあります。また、メッセージは色使いやアイコン、文字フォントなどの要素によって受け手に与える印象が変わるため、これらの工夫も大切です。 データの本質は? データを扱う業務においては、示唆や事実の取り扱いが鍵となりますが、何よりも大切なのは、適切なメッセージを抽出することです。事業で本当に伝えるべき内容をデータから見出し、わかりやすいグラフや表現で正確に伝えることを心がけています。データはあくまでメッセージ伝達のための手段であるため、無理に装飾したり加工したりするのではなく、本質となるメッセージをしっかり押さえることが必要です。 受け手は誰? また、伝えたいメッセージは、受け取り手ごとに考えるべきです。事業や状況を踏まえ、緊急度や重要度を加味して絞り込むことで、ビジネスに必要な情報が確実に伝わるようにすることが求められます。何が言いたいのかわからないという状況を避けるため、伝えたいメッセージとの整合性を意識した表現力を磨いていきたいと考えています。 構造化で進化? さらに、現在のChatGPTは文章の構造化や整理に大いに役立っています。ワークのプロセスを通してPDCAサイクルを回す中で活用し、その結果を同僚とのディスカッションを通じてさらに改善し、アウトプットの精度を高めていきたいと思います。

クリティカルシンキング入門

実践から見えてくる本当の課題

どんな問いで課題に迫る? 適切な問いを立て、課題を捉えることの大切さを改めて学びました。ファストフード店のワークでは、要素を分解し、特定した課題に対して打ち手を考えるプロセスを体験できたことで、理論と実践のつながりを実感しました。 振り返りのポイントは? また、観光課の課題に取り組む中で、スライドの作り方の振り返りを通じて、実際に打ち手を導き出すプロセスをたどる経験ができたことも大きな収穫でした。 データで本質を探る? マッチングアプリの企画を検討する際には、定量データからイシューを見出す必要性を強く感じました。業務を進める上で課題となっていた部分が、一連のプロセスを体験することで明確になり、今後は学んだ一つ一つのステップを実務で活かしていきたいと考えています。特に、データを見るとメッセージや問いの本質が薄れ、グラフ作りに偏る傾向があるため、何を伝えたいのかが十分に伝わらなくなることを痛感しました。そこで、学びの各ステップを意識しながら行動する必要性を改めて認識しています。 目的と課題の整理は? 目的を明確にした上で前提を整理し、その前提に立って課題を整理することが、事実を数値から捉え直し、関係者全体の意識を合わせる準備になると感じました。伝えたいメッセージは、事実をしっかりと伝えることから始まるため、単にグラフを作成するのではなく、構造分解して課題を定量的に評価するプロセスを重視したいと思います。KPIツリーの活用により、数値をもとに比率や増加率を取り入れながら、課題の発見につなげる手法の大切さを実感しています。

クリティカルシンキング入門

思考の癖を超えて、新たな発見へ

自問自答の意味は? 人にはそれぞれ「思考の癖」があることを知り、とても勉強になりました。この前提を理解することで、自分自身を疑い、自問自答を繰り返す作業が思考力の向上に繋がると感じました。また、重要なのは目的を把握するだけではなく、それを「押さえ続けること」だと思いました。時折できる瞬間とできない瞬間があるため、なぜできなかったのか、単に意識が不足していただけなのかを分析し、客観的な視点を持つことを習慣化していきたいです。 業務整理のコツは? 業務への活用については、現在取り組んでいる売上などの社内データの統合・管理運用プロジェクトに役立てたいと考えています。このプロジェクトでは、情報が散乱しており、様々なツールが存在する中でどのように整理するかを考える必要があります。また、各部署の意向が混在している状況において、調整は重要ですが、その前にプロジェクトの目的や理想の状態を常に念頭に置いて議論を進める必要があると感じました。他部署の人たちにも納得してもらうために、わかりやすい論理構成や伝え方にも活用できると思います。 客観視点の意義は? まずは常に客観的視点を持ち続けることが大切です。アイデアや結論が出た際には、「本当にそうなのか」「抜け落ちはないのか」「そもそもどのような目的だったか」と自問自答し続けることが重要です。 会議をどう活かす? また、客観的な視点を持てない瞬間もあるため、その後に会議を振り返り、「もしその場で客観的な視点を持てたらどうなったか、目的に立ち返ったらどうなるか」と想像し、常に客観的視点を維持したいと思います。

クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。

クリティカルシンキング入門

データ分析で見つける新たな可能性

情報はどう整理する? データを分析する際には、まず与えられた情報をそのまま受け取るのではなく、必要に応じて自分で欄を増やし、追加の情報を作成することが重要です。そして、その情報を視覚化し、絶対値だけでなく相対値も考慮しながらデータを評価することを心がけるべきです。 区切り方はどう決める? 次に、データを視覚化する際には、データの区切り方によって見える情報が異なることを認識し、自分の仮説が事実かどうかを確認するためにどの単位でデータを区切るかを慎重に考える必要があります。一番重要なのは、データをさまざまな切り口から分解し、単純に受け入れるのではなく、再度丁寧に考え直す姿勢です。 分解精度はどう向上? 業務においては、改善提案資料の根拠を示す際、日常的に発生する内容に対して、前回よりも今回、今回よりも次回と、分解の精度が向上していることを自分で確認しながら取り組むことが求められます。また、新しい運用の実施可否を判断してもらう際や、イベントのアンケート結果を分析する際、応対品質評価結果を分析する際にも、しっかりとしたデータの準備と分析が必要です。 事実確認は万全か? 確かな事実を分析するには、必要なデータが揃っているか、十分に分解されているかを事前に確認し、その上でデータ分析を開始するようにします。これにより、ただ手元にあるデータをそのまま見るのではなく、一時停止してデータを視覚化し、仮説が事実であるかを確認することを意識します。そして、MECEなどのフレームワークを活用し、抜け漏れがないかを確認した上で結論を導き出すことを心がけます。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right