データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

データ・アナリティクス入門

実例でひも解く市場戦略のヒント

市場分析はどうする? 市場分析においては、従来の市場重視だけでなく、3Cおよび4P分析の重要性を実感しました。特に、競合の存在に対する意識が不足していた点を改める必要があると感じています。また、プロモーション戦略については、各校舎ごとに異なる方式を採用すべきだと納得しました。 データ収集はどう? データ収集に関しては、まず公開されているデータを積極的に探すことが基本であると再認識しました。官公庁のサイト、新聞、経済誌など、どのようなデータが存在するかを日常的に意識することが大切です。 現状認識はどう? まずは現状を確認し、当たり前のことでもしっかりと言語化することで、チーム全体で共通認識を持つことが重要です。その上で、原因となる事象を特定し、具体的な解決策の検討に取り組む流れが効果的であると感じました。 仮説検証は? さらに、仮説を立てた上でユーザーアンケートをデザインする際は、因数分解やクロス集計が可能な形を意識することが求められます。フレームワークを活用し、実際に分析とその言語化を進めることで、より具体的な解決策に近づけると考えます。 チーム共有は? また、アンケートデザインにおいては、チーム内で考え方や方針を共有し、どのような分析が可能か、そして実際にどのようなレポートを作成するかを仮で作成して検証するプロセスが重要です。望ましい状態と現状を整理し、効果的なフレームワークを見つけて習得すること、さらにはその内容を資料にまとめ、教えられるようにすることも大切だと実感しました。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

アカウンティング入門

提供価値に気付く会計分析

会計データの意味は何? 会計データが単なる数字や割合ではなく、企業が顧客に提供する価値と密接に結びついた「意味ある情報」として捉えられる点が印象に残りました。企業の提供価値やビジネスモデルに即してP/L・B/Sを分析することで、従来は抽象的だった数字に具体的な背景が読み取れるようになったと感じています。また、異なる業界の事例を比較検討することで、業界特性やビジネスモデルがより明確に理解できるという新たな視点も得られました。 比較で何を発見する? 受講直後は、競合企業との比較に重点を置いていましたが、異業種との対比により新たな発見があることに気付かされました。もともと自社は通信制の教育事業を中心に展開しているため、同業他社との比較が主でしたが、コンテンツ配信の観点から他業界の会計データを参照することで、売上原価の削減など別の改善策を検討する余地が見えてきました。今後は「提供価値を意識した会計データの読み解き」と「比較・対比を通じた気付き」を大切にしていきたいと考えています。 異業種の決算書は何を示す? また、新規事業立案にあたっては、競合のみならず異業種の決算書も調査し、従来の儲け方以外の可能性や資金の使い方、調達方法について幅広い視点で検討していきます。具体的には、5月末までに決算書が提出される企業の事例を調べ、6月中に自社との比較分析を行う予定です。決算書全体を細部まで追いかけるのではなく、主要な利益項目など大きな数字に注目し、グラフなどを活用して全体の傾向を把握した上で詳細な分析に進むことを意識していきます。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

データ・アナリティクス入門

仮説思考で業務が変わる!実践活用法

仮説活用はどう感じる? 自身の仕事において仮説を活用して、答えの決まっていない分析や問題箇所の特定を行うステップを有意義に利用しています。日々の業務が体系立てて整理できたことで大変役立ちましたが、フレームワークの活用についてはGail等を通じて不十分であると感じています。 仮説の役割は何? 仮説について、まず仮説とはある論点に対する仮の答えを指します。問題解決の仮説と結論の仮説の二つがあります。問題解決の仮説は、問題解決のステップにおける「where」の深掘りと「why」の原因分析に関する仮説を立て、それに対する検証のためのデータを集める段階が該当します。 仮説はどう絞り込む? 仮説を考える際のポイントとして、仮説を決め付けずに複数立てること、そしてそれらの仮説が互いに網羅性を持つようにすることが重要です。また、仮説を構築する際には、3Cや4Pなどのフレームワークを活用することが有用です。データの収集においては、誰にどのように聞くか(アンケートや口頭)が重要なポイントとなります。 業績管理の真因は? 自分が担当している業績管理の業務では、計画と実績の差異を分析し、真因を把握し、改善策を立案することが求められます。このため、問題箇所の特定、原因の分析、仮説に対するデータ収集のプロセスは非常に役立ちます。 検証成功の理由は? 今週において、仮説を活用したデータ検証が成功し、部門長の了解を得られた経験があります。今後も問題解決の手順と仮説、データ収集のプロセスを効率よく業務に適用していきたいと思います。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right