クリティカルシンキング入門

思考の癖を超えて、新たな発見へ

自問自答の意味は? 人にはそれぞれ「思考の癖」があることを知り、とても勉強になりました。この前提を理解することで、自分自身を疑い、自問自答を繰り返す作業が思考力の向上に繋がると感じました。また、重要なのは目的を把握するだけではなく、それを「押さえ続けること」だと思いました。時折できる瞬間とできない瞬間があるため、なぜできなかったのか、単に意識が不足していただけなのかを分析し、客観的な視点を持つことを習慣化していきたいです。 業務整理のコツは? 業務への活用については、現在取り組んでいる売上などの社内データの統合・管理運用プロジェクトに役立てたいと考えています。このプロジェクトでは、情報が散乱しており、様々なツールが存在する中でどのように整理するかを考える必要があります。また、各部署の意向が混在している状況において、調整は重要ですが、その前にプロジェクトの目的や理想の状態を常に念頭に置いて議論を進める必要があると感じました。他部署の人たちにも納得してもらうために、わかりやすい論理構成や伝え方にも活用できると思います。 客観視点の意義は? まずは常に客観的視点を持ち続けることが大切です。アイデアや結論が出た際には、「本当にそうなのか」「抜け落ちはないのか」「そもそもどのような目的だったか」と自問自答し続けることが重要です。 会議をどう活かす? また、客観的な視点を持てない瞬間もあるため、その後に会議を振り返り、「もしその場で客観的な視点を持てたらどうなったか、目的に立ち返ったらどうなるか」と想像し、常に客観的視点を維持したいと思います。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

クリティカルシンキング入門

データ分析で見つける新たな可能性

情報はどう整理する? データを分析する際には、まず与えられた情報をそのまま受け取るのではなく、必要に応じて自分で欄を増やし、追加の情報を作成することが重要です。そして、その情報を視覚化し、絶対値だけでなく相対値も考慮しながらデータを評価することを心がけるべきです。 区切り方はどう決める? 次に、データを視覚化する際には、データの区切り方によって見える情報が異なることを認識し、自分の仮説が事実かどうかを確認するためにどの単位でデータを区切るかを慎重に考える必要があります。一番重要なのは、データをさまざまな切り口から分解し、単純に受け入れるのではなく、再度丁寧に考え直す姿勢です。 分解精度はどう向上? 業務においては、改善提案資料の根拠を示す際、日常的に発生する内容に対して、前回よりも今回、今回よりも次回と、分解の精度が向上していることを自分で確認しながら取り組むことが求められます。また、新しい運用の実施可否を判断してもらう際や、イベントのアンケート結果を分析する際、応対品質評価結果を分析する際にも、しっかりとしたデータの準備と分析が必要です。 事実確認は万全か? 確かな事実を分析するには、必要なデータが揃っているか、十分に分解されているかを事前に確認し、その上でデータ分析を開始するようにします。これにより、ただ手元にあるデータをそのまま見るのではなく、一時停止してデータを視覚化し、仮説が事実であるかを確認することを意識します。そして、MECEなどのフレームワークを活用し、抜け漏れがないかを確認した上で結論を導き出すことを心がけます。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

クリティカルシンキング入門

学び続ける力で未来を変える

学びの反復は必要? 反復して学び続けることの重要性を再認識しました。初回の学習を振り返る中で、多くのことを思い出し、反復しないと学んだことが徐々に忘れ去られてしまうことが理解できました。 問いが生む効果は? イシューを問いの形にすることは、自然と解決策を探し出す助けとなります。また、問いを周囲と共有することで、同じ課題でも立場によって異なるアプローチが必要であることに気づきます。共通の目標に向かって解決策を模索できるのです。 ミーティングで何を問う? ミーティングの場では、課題を問いの形式に変えて共有し、解決策を探索します。異なる立場によって異なる解決策があることを理解し、その違いを意識しながら共通認識を持つための説明を心がけます。 データは見やすくすべき? データを見やすくすることも重要です。プレゼンやミーティングでのデータ分析では、より見やすい形に編集します。また、平均値が提示される場面では、その平均値の出し方が分析において妥当であるかどうかを考えることが求められます。 意識改革は成長につく? これらを活用するためには、自分の意識を変える必要があります。習ったことを反復し、意識し続けることが重要です。今週の学習内容に関わらず、最初の週からの内容を繰り返し思い出し学び続けます。気になった書籍はすぐに読み、知識を広げる習慣を続けることが肝心です。その瞬間学びを怠ると、すぐに元の自分に戻ってしまうため、学んだことを少しずつでも実務に活かし続けることで、成長していけます。学習習慣を継続することが重要です。

クリティカルシンキング入門

異なる視点で磨く伝え方の技術

交流で何を感じた? ①異なる職種や立場の方々との交流を通じた学びでは、社内では当たり前と思われる承認が得られない状況に直面しました。この経験から、自身の話し方や論理的な説明を工夫する重要性を意識しました。グループワークでは、論点を見直すための問いかけができたことも大きな収穫でした。背景として、前提知識が異なるためにフラットな視点で物事を見ることができたことも影響しています。 どのグラフが効果的? ②相手にわかりやすく情報を伝える方法については、社内であまりグラフを作成しなかったため、当初は体系化されていませんでした。しかし、学びを通じて折れ線グラフは推移を示すために、棒グラフは時系列で情報を見せるために有効であるといった具合に、体感的な見やすさを言語化することができました。 どの手順が有効? 効果的な情報の伝達には、「考える→情報を集める→再考する」という手順が大切です。具体的には、文章の目的や読み手、前提情報や懸念点を理解した上でメッセージを組み立てることが求められます。 グラフで何を伝える? また、グラフ作成は、説得や課題把握の一手段ですが、そこから何が言えるかを自分なりに言語化することが重要です。データを元に示唆を発見し、相手や自身を納得させるプロセスが欠かせません。 どの方法で振り返る? 情報の伝達にあたっては、自分が文章を作成する際だけでなく、他者の文章をチェックする機会でも、この学んだ手法を活用しています。プロジェクト完了後の振り返りにおいてもアンケート結果を分析し、最も見やすい形で伝えることに努めています。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

クリティカルシンキング入門

伝わる!魅せる!資料作成の秘訣

グラフ作成でどう伝える? グラフ作成に際しては、まず「伝える」という視点を忘れず、内容を整理して他の人にも分かりやすいように工夫することが大切です。たとえば、月ごとの売り上げの推移など、時間軸のデータを示す場合は、慣例通り縦棒グラフを用いると分かりやすくなります。また、注目してほしい項目については斜体や下線を活用し、他の部分との違いを出すことが有効ですが、その際に過剰にならないように注意が必要です。 フォントと色はどうする? また、メッセージを伝える際には、フォントを統一することや、色の印象をTPOに合わせて選ぶことも重要です。アイコンとメッセージが一致しているかどうか、また視覚的に理解を促すデザインになっているかを意識することで、伝えたい内容がより効果的に伝わります。 伝わる資料の秘訣は? このグラフ作成の工夫を通じて、より相手に見やすい資料を作る意識が高まりました。これまで、メールやメッセージがスルーされることが多く、部下のモチベーションの問題として片付けていた部分にも改善の必要性を感じました。今後は、相手にしっかり読んでもらえるための工夫を重ね、リマインドをしなくても返信が得られるようなコミュニケーションを目指します。 アイキャッチはどう設定? さらに、アイキャッチを意識した文章作成を行い、読み手の立場に立ってシンプルかつ分かりやすい内容を心掛けることが必要です。タイトルやリード文、文章の硬軟、体裁に加え、資料作成においてはフォント・色・順番にも注意を払い、伝わりやすい資料を作り上げることが重要であると強く感じています。

クリティカルシンキング入門

気づきが変えた!思考の深掘り術

なぜ深掘りが重要なのか? 物事に対して「なぜ」と深く掘り下げる姿勢が大切だと気づきました。データや他人の意見を表面的に捉えることが多かったことに改めて気づかされました。クリティカル・シンキングがなぜ必要なのか。物事の意味を深く考えることが、その本質を捉えることに結び付くのだと実感しました。 ロジックツリーで得られる新しい発想とは? また、ロジックツリーの考え方を学び、自分の思いつきに頼った方法から離れることができました。課題に対して原因をカテゴリーに分けて掘り下げることで、新しい発想を得られることがあります。今後もこの考え方を活用していきたいと思います。 なぜデータの深掘りが必要なのか? 具体的には、新商品の企画立案や商品の売上分析の際に役立つと考えています。市場調査や顧客の声を参考にしている中で、データをそのまま受け取ってしまうことがあるため、なぜそのような意見やデータになるのか深掘りする思考を持ち、情報を整理することに努めたいです。また、売上分析では、顧客の感じ方をより深く理解するために「なぜ」を問い続けることで、具体的な施策提案につなげられると考えています。 思考整理の習慣化はどう進める? 一度学んだからといってすぐに身につくわけではありませんが、まずは日々の考え方の習慣づけから始めて、自分の能力として高めていきたいです。例えば、上司に確認する予定の内容について「なぜそう思ったのか」を考え直し、思考整理を進めます。また、現在の課題や案件にロジックツリーを使い、漏れや重複がないかを確認しながら原因と考察をしていく予定です。

アカウンティング入門

ターゲットを知ることで変わる未来

売上報告の数字は何を示す? ミノルとアキコのカフェはそれぞれ異なるターゲット層を想定しており、その特性を活かした戦略が売上に影響しています。売上報告書(PL)に表れる数字は、ただの数字以上の意味を持ちます。分析する際には、数字からどのような現象が起きているかを読み解く力が必要です。 どこにリソースを注力する? クライアントとのコンサルティング業務やデータ分析の提案では、ターゲット顧客のニーズを深く理解し、どこにリソースを集中させるべきかを考える力が重要になります。さらに、新しいサービスやプロジェクトを提案する際には、品質とコストのバランスを取ることの大切さを学びました。適切な投資を行うことで顧客満足度を高め、長期的な利益を追求する戦略を立てられるようになります。これらは、経営の意思決定やアドバイスを効果的に行う際にも役立ちます。 どこに価値を見出す? プロジェクトを始める際には、ターゲット顧客のニーズや好みを詳しく調査し、どこに価値を置くのかを明確にします。プロジェクトの初期段階で効果的な投資先を決定し、価値を最大化する要素に注力する計画を立てます。コスト面では、期待するリターンが高ければ単なるコスト削減ではなく、質を維持する選択も検討します。さらに、コスト分析とROI評価の機会を増やします。チームメンバー間でプロジェクトのコンセプトや提供価値を共有し、プロジェクト目標を一貫して実行できるようにします。クライアントや関係者に提案する際には、顧客体験を軸にした説得力のあるプレゼンテーションを作成し、付加価値を明確に示すことを心掛けます。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

データ・アナリティクス入門

多角的発想で拓く学びの扉

仮説の立て方は? 仮説を立てる際には、複数の仮説を提示し、網羅性を意識することが大切です。3Cや4Pといったフレームワークを活用すると、仮説を立てやすくなることを実感しました。また、単に考えただけでなく、様々な切り口からアプローチするよう努めることが重要だと感じました。 データ選びはどう? データ収集については、誰にどのように聞くかが非常に大切です。自分に都合の良いデータだけでなく、反対の意見となる情報も収集するよう心掛けています。一見、目の前にある情報だけで判断せず、目的に沿ったデータであるかどうかを考える重要性を改めて感じました。実際、抽出したデータで本当に検証したい内容が導き出せるかを、常に見直す必要があると考えています。 サービスはどう伝わる? 新しい運用やシステムの活用状況、また提供しているサービスがどのようにお客様に届いているかを分析する際は、まず言葉で仮説を立てることに取り組んでいます。これまで、数値を見ただけで直感的に考え、その立証に必要なデータをどう抽出するか検討していましたが、目的に合致しているのか不安に感じることもありました。そのため、自分にとって都合の良いデータだけに偏らないよう、改めて意識しています。 生産性向上はどう? また、社内の生産性向上施策が実際に効果を上げているかを検証する際にも、フレームワークを用いて複数の仮説を立て、網羅的に検討することを意識しています。抽出したデータが目的に沿っているかを確認した上で、そこからどのような結論が導けるのかをしっかり検証することが重要だと感じました。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right