データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

データ・アナリティクス入門

あとひと手間!四段階で切り拓く解決力

どう問題解決する? 問題解決の基本プロセスとして、「What → Where → Why → How」の4つのSTEPを学びました。プロセスを細かく分解し、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性を強く感じました。日常の業務において、これらのステップをいくつも行き来しながら問題の原因を探る手法は、非常に実践的だと実感しました。 視点を変える意義は? また、仮説を立てる際には、問題に関わりがありそうな要素だけでなく、それ以外の視点にも目を向ける考え方が有益だと学びました。対概念で物事を考えるアプローチは、固定概念に囚われず幅広い視野で問題解決に取り組む姿勢を養うための大切なポイントです。 ABテストの真意は? さらに、ABテストを活用して施策の効果を比較し、条件を揃えた上でデータを分析するプロセスは、仮説検証の精度を高める上で非常に有効だと感じました。仮説を実践しながら効果を測定し、次のアクションにつなげる一連の流れは、今後の分析業務にも大いに役立つと思います。 離脱理由は何か? 加えて、ファネル分析によってユーザーの利用段階を明確に分解し、どのプロセスで離脱が生じているかを把握する手法も印象的でした。漏斗のように段階ごとに数値を追うことで、課題がどこにあるのかを具体的に把握できる点は、現場での運用改善に直結する大切な視点です。 実践で成長する? 全体として、これらのアプローチを繰り返し実践することで、柔軟かつ論理的な問題解決能力を養えると感じました。定量分析やアンケートを活用し、他者の視点も取り入れた説得力のある提案や、チーム目標の設定など、今後の実務や運用計画にも直結する内容で、非常に有意義な学びとなりました。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

戦略思考入門

視点を広げる戦略的思考の重要性

全体視点は必要? 経営者の視点で考えることに非常に感銘を受けました。目の前の仕事に没頭しすぎると、視野が狭くなりがちです。特に、自分の事業に専念していると、全体を見る視点が欠けることもあります。この問題に対して、私は全社的な視点を常に持ち続ける必要性を感じました。 恐れず選択できる? また、「ジレンマを過度に恐れない」という教えは非常に有益でした。例えば、納期と品質、短期的効果と中長期的効果の間で最も良い選択肢を見つけることです。この過程で、他者の判断基準を頭から否定せず、じっくりと考える姿勢が求められます。ジレンマを克服するためには、創造的なアイデアを粘り強く考え続けることが重要だと実感しています。 戦略の本質は何? 戦略的に考えることを「漫然と仕事をしない」と解釈しました。日常の業務に忙殺されているときこそ、大局的な視点を持ち、自分の視界を広げることが求められます。これから新しい領域にも取り組むことがあり、常に広い視野と多角的な視点を持つことを意識して仕事に取り組むつもりです。 全体戦略をどう見る? 日々の業務と全体戦略の関連性を意識し、短期的な結果にとらわれすぎないように心掛けます。常にその意識を持つことは難しいかもしれませんが、3年から5年先を見据えた考え方や動き方を忘れないようにします。そして、SWOT分析やPEST分析といった戦略フレームワークを実践で活用し、データに基づいた意思決定を心がけたいと思います。 戦略共有は有効? 戦略的思考に関するトレーニングを取り入れ、フレームワークや戦略分析の機会をチームで共有していくつもりです。時間が限られている中での優先事項として、この取り組みの重要性を増していきたいと思います。

クリティカルシンキング入門

分解と工夫で見える新たな発見

なぜ分解して把握する? 物事を分解して状況の解像度を上げることの重要性を学びました。特にデータ分析の視点から、①加工の仕方、②分け方の工夫、③分解時の留意点という3つのポイントに着目して学習を進めました。 加工手法ってどう? まず、データ加工については、意味合いを分かりやすくするために基準を設け、グラフ化する手法に注目しました。与えられた票をそのまま見るのではなく、自ら欄を追加して全体を俯瞰することで、絶対値や比率などの数値から隠れた傾向を明確にする―いわゆる「可視化」が鍵となります。 どう分けると良い? 次に、データの分け方の工夫では、手元のデータをもとに状況を捉えるため、単に機械的な10刻みで区切るのではなく、試行錯誤を繰り返しながら意味のある切り口を見つけ出すことの大切さを実感しました。場合によっては、元のデータに立ち返って再検証する方法も有効です。 分解の注意点は? また、実際に分解する際は、When(いつ)、Who(誰が)、How(どのように)の観点を持って整理し、自分自身に本当にそうかと問いながら、複数の切り口から検証していく姿勢が求められると理解しました。こうした実践を通じ、たとえ一度で完璧な結果が得られなくとも、傾向が見えてくること自体に大きな価値があると感じます。 分析結果をどう活かす? これらを踏まえ、まずは自分の部門での最近の取り組みを題材に、発生件数や予測される件数、台数などを定量的に観測し、事象の強弱からリスクの高低を分類する(いわばクラスタリングする)というアイデアが浮かびました。加工方法や分類の工夫は、実践経験を重ねる中で深まるものだと考えていますし、他にも有効なアプローチがあれば議論を通じて共有できればと思います.

戦略思考入門

規模の経済性で印刷業務を改善する方法

規模の経済性とは何か? 実践演習を通じて、生産数量が増えることで1個当たりの固定費が減少すること、すなわち「規模の経済性」という用語を初めて知りました。しかし、単純に発注量を増やすだけでなく、需要のバランスや原材料の供給、品質、在庫管理の問題など、多様な要因を総合的に検討する必要があると実感しました。この考えは、私の業務である資材の印刷費にも応用できそうです。例えば、需要の確認や原材料費、印刷部数などについて、過去の経験に頼るのではなく、常に現状に合わせて見直す必要性を感じました。 戦略的思考をどう実践する? 総合演習では、業界の数値や状況をフレームワークで整理し言語化することで、自分が考えていた施策とは異なる施策の可能性を見出せることもありました。「戦略的思考」の3つの要点を達成するためには、適切なゴールを設定し、そこに至る道筋を明確化することが重要であり、それを他者に理解してもらうために言語化することを業務でも実践していきたいと思っています。 印刷費管理の課題とは? さらに、印刷費の管理では、大量印刷による倉庫管理費や廃棄コストについても見直しが必要です。紙の原価が上昇している現状において、常に需要を確認しながら印刷の必要性を再考することが求められます。これに対して、顧客ニーズや印刷利用数のデータを基に、毎回印刷部数とその必要性をメンバーと共に確認していく提案を進めていきたいです。 フレームワーク活用の重要性 また、総合演習から学んだ3C分析やPEST分析などのフレームワークは、実際に自分の業務で使ってみることによって初めて身につくと感じました。これらの手法を用いて、自分の考えを他者と共有し、適切なゴールや対応策を探求していきたいと思います。

データ・アナリティクス入門

問題解決力が劇的に向上した理由

問題解決の新しいアプローチとは? 「What」「Where」「Why」「How」のステップについて、私はこれまで問題解決を漠然とした情報から考えていました。しかし、本講座でこの方法を学んだことで、漏れなく深く考えることができると感じ、印象に残りました。 問題解決には「あるべき姿」と「現状」のギャップを考えるアプローチが効果的です。私にはこの考え方があまり馴染みがなかったのですが、このように捉えると急に思考がスッと整理され、考えやすくなりました。これは非常に印象的でした。 新たに学んだ「MECE」の重要性 今週の学習では、新しいことが多く、一つとして「MECE」という言葉を初めて知りました。データの切り分け方の基本として非常に重要であり、生きたデータを整備する上で欠かせないと理解しました。実務での適用はまだこれからですが、曖昧さを排除するために「その他」を効果的に使うコツを学び、使える時が来たら活用していきたいと思います。 ギャップ分析をM&Aにどう活かす? 「あるべき姿」と「現状」のギャップを考えるアプローチを、私の仕事である事業承継型M&Aコンサルティングにどう生かせるか検討しています。例えば、買い手候補の選定においてシナジー効果を考慮しながら、売り手会社が目指す「ありたい姿」とのギャップを埋めるような選定を進めることが可能だと感じています。 データ分析での工夫はある? ロジックツリーやMECEについては、私の現職ではデータ分析で具体的に使用する場面が少ないと感じました。ただし、M&A後の支援においては、各事業ごとのデータを分析する際、上司から指示を受けてロジックツリーを活用した経験があります。今後も内部プロジェクトや会議で役立てたいと考えています。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

クリティカルシンキング入門

問い続ける学びの軌跡

イシューはどう見極める? まず、イシューを特定するためには、必要なデータを揃え、各データの特徴が明確になる切り口から捉えることが大切だと感じました。その上で、結論を導くためにはMECE(漏れなくダブりなく)の視点で情報を分解し、ロジックツリーを活用して全体の構造を整理していくアプローチが有効だと思います。 本質はどう捉える? また、イシュー自体は疑問形で問いかけを続けることで、その本質や輪郭が浮かび上がってくると実感しました。今、自分たちが本当に考えるべきことは何か、解決策を急ぎすぎずにじっくりと検討する姿勢が重要であると感じています。どの問題を課題として捉えるべきかを問い続けることが、正しいアプローチへとつながるのだと実感しました。 論点はどこにある? さらに、プロジェクトやチーム内の課題、タスクの対応において、この手法は非常に有用だと感じました。担当している作業の中でどこに問題があり、何が論点なのか、またいつまでにどのような解決を図るべきかといった点を明確に把握するためのツールとして活用できると考えています。これにより、チームや上司、クライアントとの認識共有がスムーズになり、問題解決への具体的なステップが見えやすくなるでしょう。 説得力はどう伝える? また、社内研修や新技術の勉強会など、さまざまな場面においても、同じ手法で問題点や論点を整理することができる点に大いに役立つと感じました。考えた道筋を正確に日本語の文章に落とし込み、しっかりとした説明ができるようにすることは、説得力を高める上でも非常に重要です。問題点を混ぜ合わせず、具体的にどこにどのような課題があるのかを順序立てて整理していくことが、確かな解決策を見出すための鍵になると考えています。

クリティカルシンキング入門

受講生の振り返り文 --- 視覚化のコツ:スライドデザインの秘訣

スライド作成の重要性とは? 視覚化のポイントとして、読み手の存在を意識してスライドを作成することが重要です。人間の目線の動きを考慮し、タイトルと構成の整合性を保つ必要があります。強調したい部分には装飾を加え、データは一つにまとめるなど、情報提示に工夫を凝らしましょう。特に、相手に情報を探させないように気を配ることが求められます。また、情報を表すグラフは用途に応じて使い分けることが大切です。 読み手を意識した文章作成法 良い文章の作成も同様に、読み手を意識することが肝心です。文章は目的を抑えつつ、読み手に理解しやすい内容で構成されていることが求められます。冒頭のアイキャッチでまずは興味を引き、リード文で引きつけて読み進めてもらうことが重要です。また、読み手に応じて文章の硬さや柔らかさを調整し、読みやすい体裁を整えることも忘れずに。 効果的な報告書や提案書の作成法 上司への報告やクライアントへの提案時には、スライドを作成する機会が多いでしょう。数字を報告する際には、単にファクトを並べるのではなく、伝えたい部分をグラフなどでわかりやすく表現することが重要です。提案内容をしっかりと読んでもらうためには、スライドのアイキャッチを意識し、文章の体裁を整えることが求められます。 課題分析の視覚化がもたらす効果 事業部の課題分析を行う際には、数字のデータをもとにスライドにまとめて報告することがあります。普段は数字の羅列で伝えることが多いため、グラフ化や色付け、強調ポイントの設定などを通じて、情報を探させないスライドを作成するよう心掛けましょう。スライドの中に含まれるタイトルや文章の体裁を整えることで、見るだけで伝えたい課題が明確に伝わるように工夫することが大切です。

データ・アナリティクス入門

仮説で挑む学びの冒険

仮説はどこから始まる? ■仮説を立てる 仮説を立てる際には、まず3C分析や4P分析などのフレームワークを活用し、幅広い視点で考えることが効果的です。複数の仮説を挙げ、これらの中から絞り込むことで、反論や別の可能性を排除できるように意識することが大切です。また、意図的に役割や網羅性を持たせることもポイントとなります。 検証はどう行う? ■仮説を検証する 仮説を検証する際は、比較の指標として平均や標準偏差などのデータ評価の手法を選ぶとよいでしょう。加えて、データ収集の際には「誰に」「どのように聞くか」に十分注意し、有力な仮説の検証に加えて、他の仮説が成立しないことを示すデータも集める必要があります。 仮説の違いは何? ■仮説の分類と意義 仮説には「結論の仮説」と「問題の仮説」の2種類があります。複数の仮説を立てることで、検証マインドや説得力が向上し、関心や問題意識が高まるだけでなく、物事のスピードや行動の精度も向上することが期待されます。 最初は何から進める? 仮説が求められた場合、最初にどこから取り組めばよいかわからなくなることがありますが、その際はフレームワークを活用するのが良いと考えています。実際、過去には「クロスセルで自社商品と相性のよい商品は何か?」や「価格変更による影響」を検討した経験があります。似たような課題に対しても、あらゆる仮説を立てたうえでロジックツリーに当てはめ、優先度を決めながら、時間をかけて分析すべき事項を整理していきたいと思います。 有力仮説はどう選ぶ? どのように客観的な仮説を複数挙げるか、また有力な仮説に偏りが生じた場合にはどのように対応すればよいかについて、具体的な方法を検討したいと考えています。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right