データ・アナリティクス入門

平均だけじゃ見えない真実

単純平均の落とし穴は? 単純平均は、ばらつきを見えにくくし、また外れ値により大きく値がぶれる可能性があります。そのため、何が適切な代表値であるかを十分に考慮した上で、比較や分析に臨むことが大切です。 標準偏差で何が分かる? 標準偏差に関しては、波の大小をイメージすることで、そこから導き出せる情報がわかりやすくなります。これにより、平均だけでは捉えきれないデータの分布の実態を理解しやすくなります。 年齢層の違いを把握するには? 具体的なデータセットを例に挙げると、例えば、ある組織の従業員の平均年齢が38歳の場合、全体は大まかに新卒5年未満、30代後半~40代初頭、60歳前後という3グループに分けることができます。単純な平均値だけではこれらの年齢層のばらつきを正確に反映できませんが、標準偏差を合わせて求めることで、年齢層の多様性をより具体的に把握し、組織の魅力としてアピールする材料とすることが可能です。 外れ値の影響は? また、外れ値がビジネス上の意思決定にどのように影響を与えるかという視点も重要です。たとえば、顧客ごとの売上金額を分析する際、1%程度の大口顧客の存在が全体の平均を引き上げてしまうと、実際の単価水準が正しく把握できなくなります。単純平均のみを頼りにすると、実態との差を見誤り、競合との比較でも課題が見えづらく、適切な方策に結び付けることが難しくなります。 多角的分析は有効? このような背景から、単に平均を算出するだけでなく、加重平均や中央値、そして標準偏差を併用することで、データのばらつきを把握し、その意味するところを考察する姿勢が重要だと改めて感じました。年度末のまとめや次年度への申し送りの際にも、前年や前々年との比較を行い、伸び率や減少率を幾何平均で求めるなど、より多角的な視点でデータを分析することが求められます。 データの可視化は? 計算式の意味を完全に理解していない部分もありますが、情報やデータが揃っているなら、まずは標準偏差を算出して、その意味合いを考えることから始めると良いでしょう。数字をただ並べた表だけでなく、ヒストグラムなどを用いてばらつきを可視化することが、まず第一歩だと感じています。

リーダーシップ・キャリアビジョン入門

仕事の向き不向きと目標の共有術

どんな仕事が向いている? エンパワメントという概念には、向く仕事と向かない仕事が存在します。特に、高度な政治力や暗黙知が必要な仕事、不確実で臨機応変な対応が迅速に求められる仕事、ミスが許されない仕事には向かないでしょう。このため、仕事の特性や相手のスキルに応じた適切な対応が重要です。すべてを丸抱えするのも、全てを丸投げするのも好ましくありません。 どうやって目標を共有? 目標や目的を立てて共有する際には、まず自分自身が納得し、自分の言葉で話せる状態になることが大切です。また、メンバーに共有する際は上司の言葉そのままではなく、相手に合わせた自分の言葉で伝えることが重要です。成功の基準や目標の意義についても、明確に説明する必要があります。共感を引き出すためには、目標設定のプロセスにメンバーを巻き込むことが不可欠で、一人で決めて押し付けないように注意します。その過程で、「わからない」「できない」「やりたくない」を見極め、合理的に説明するとともに、感情にも訴えることが大切です。 計画は具体的にどうする? 計画の立案では、具体化が重要であり、6W1H(誰が、何を、いつ、どこで、なぜ、どうやって、いくらか)を意識して進めます。計画策定は本人に任せ、必要があればサポートします。忙しい時こそ余裕を持つ意識が大事で、各メンバーの仕事について、どのような姿が望ましいのか、またどんなアウトプットが求められているのかを明確に伝えましょう。計画作成時も6W1Hを意識し、認識の差異がないようにしましょう。 本当に伝わっている? 伝えている、共有できていると思い込むことがよくありますが、マイクロマネジメントにならない程度に目的や目標の共有状態を確認していくことが大切です。また、「できる」としか返答してこない場合には、「本当にできるのか」「できるけれど詳細がわからないことはないか」「嫌々やらされている仕事になっていないか」といった本音を引き出すために、日常的なコミュニケーションを心がけましょう。相手をよく知るため、どんなに忙しくても余裕のある表情や機嫌の良い態度を心がけ、いつでも質問や相談ができる雰囲気を作ることが重要です。笑顔を意識することも大切です。

戦略思考入門

競合分析で自社の強みを引き出す方法

差別化戦略はどうすべき? 差別化を進めるには、フレームワークを活用して自社と競合の状況を整理し、どこに共通点や相違点があるのかを明確にすることが重要です。これにより、感覚に頼らない判断が可能になります。また、思い込みだけで競合を定めるのではなく、他の競合となりうるセクターを意識的に洗い出すことも大切です。自社の強みを正確に理解し、効果的な差別化戦略を選択するためには、VRIOなどのフレームワークを活用し、実現可能で持続可能な方策を見つける必要があります。 競合状況は十分か? まず、自社と競合の状況を整理することが求められます。商社は幅広い事業に取り組む機会がありますが、ターゲットとする事業領域において、どのような競合が予想されるかをフレームワークを用いて分析します。次に、取り組んでいる事業の主要成功要因(KSF)を明確にし、対象とすべきターゲットのニーズを具体化します。ターゲットには異なるニーズがあるため、それに応じたアプローチが必要です。 自社の強みは何? ターゲットに焦点を当てた上で、自社の強みを体系的に分析することも重要です。VRIOを活用して自社の強みを整理する際、自社のリソース(ヒト・モノ・カネ・情報)の全体像を把握し、それぞれの価値や希少性、模倣困難性、組織的な活用度を正確に評価することが求められます。このプロセスには時間がかかることも認識しています。 現状分析はどうなっている? 事業領域が広がりすぎているため、個々の事業において自社、競合、顧客を正しく分析し、整理する時間が取れていない現状を見直す必要があります。選択肢を絞り込み、優先順位をつけるために差別化を考えることは有効です。整理をすることで、競争優位性がない事業に対しては取り組みの優先順位を下げる判断も必要となるかもしれません。 実行計画はどう考える? 具体的なステップとしては、まず事業領域ごとの自社、競合、顧客の情報を整理します。次に事業におけるKSFを明確にし、見るべきターゲットを特定します。続いて、事業領域に関連する自社の経営資源の全体像を整理し、VRIOを活用して自社の強みを発揮できる事業かどうかを判断します。

アカウンティング入門

高級カフェの成功に学ぶP/L活用法

P/Lの基本的な理解を深める 私は、「ナノ単科」の一環としてP/L(損益計算書)について学びました。そこでは利益の種類について知識を深め、具体的には5つの異なる利益の計算方法を学んだのです。まず、「売上高」から「売上原価」を差し引いて「売上総利益」が算出されます。次に、「売上総利益」から「販売費及び一般管理費」を引いて「営業利益」が求められます。この「営業利益」から「営業外利益」を引いて「経常利益」に至ります。そして、「経常利益」から「特別損益」を引くことで「税引前当期純利益」が出され、最後に「税引前当期純利益」から「法人税等」を差し引くと「当期純利益」が得られるのです。これらの概念については大まかに理解していましたが、カフェの例を通じてさらに体系的に理解することができました。 カフェの事例で学ぶ収益モデル カフェの具体例では、高級志向のカフェは初心者が手を出すには利益を上げるのが難しいという先入観を持っていました。しかし、例を通して、そのカフェがしっかりと高い売上高と経常利益を上げていることが示され、客数が多ければ儲かるという単純な考え方が誤っていることに気づかされました。高級店の儲けの仕組みを学ぶことで、その経営戦略に理解が深まったと思います。 自社決算の活用法を考える この学びをどのように活用したいかという点ですが、利益を上げる仕組みを知ることによって自社の決算書をより有効に活用できると考えています。過去に新規事業を考える際、私たちはビジネスの内容や目標、予想される利益を考慮していましたが、今後はP/Lを詳細に考慮した計画を立てることができそうです。 数字の裏にある意味を探る また、実際に自社の過去の決算書や今期の業績予測資料を確認することで、これまで表面的にしか捉えていなかった数字の背後にある意味を理解できました。売上高や粗利益、あるいは経費や当期利益など各項目を一つずつ理解することで、業績の予測もより正確に行えるようになったと思います。特に営業部門ではない私の部門でも、今期の旅費や派遣費用、販管費が増加する見込みがあるため、前月の実績を基に予測を行い、営業利益の改善に役立てていきたいと考えています。

データ・アナリティクス入門

データで掴む!即効性のある仮説検証術

仮説の設定と共有はどうする? 「仮設の設定」 何が(what)、どこで(where)問題が発生しているのかという視点で考えることが求められます。その際、3Cや4Pのフレームワークを用いることで、網羅性を確保できます。自分自身の仮説を持つことも重要ですが、独りよがりにならないように、複数人で仮説を出し合うことが大切です。さまざまな視点で仮説を考えることで、より豊富な仮説を出すことができます。そして、その仮説がなぜ(Why)起こっているのかを考え、解決策(How)を導き出します。 仮説の検証はどのように行う? 「仮説の検証」 解決策(How)として妥当かどうかを検証する際には、立証したい仮説に偏ったデータ収集は避けます。他の仮説を立証するようなデータも含めて、客観的にデータを比較することが重要です。これにより、仮説の説得力が強まり、仮説から導き出される結論(意思決定)の実効性も高まります。どんな単位を使ってデータを比較するのかや、主張したい仮説をいかに端的に説明できるかを慎重に考える必要があります。 データ分析で何を重視する? 「仮説の共有」 特に組織においては、「問題解決の仮説」から導き出される「結論の仮説」を実行する際に、コミュニケーションの課題が発生します。自身の仮説を客観的に立証した上で、共有するための仮説を立てる必要があります。 自身の仕事の一つの課題として、ドライバーの待機時間の削減が挙げられます。得られたデータから平均値を算出し、標準偏差も計算します。そして、組織として持つべきKPI値(平均値・標準偏差)と比較します。そのうえで、KPI値未達の箇所(Where)に注目し、なぜ(Why)未達なのかを関係部門と数値を見ながら考えます。その後、仮説の設定(問題解決方法 How)を行います。 まずは、得られたデータから平均値と標準偏差を算出します。次に、得られた平均値が妥当なのかを標準偏差から検討します。標準偏差を悪化させている要因(外れ値)に注目し(Where)、なぜ外れ値が発生しているのかをプロジェクトメンバーと意見を交わして(Why)、直近で必要な対策(How)を考えます。

マーケティング入門

顧客目線でマーケティング戦略を見直す方法

顧客目線をどう捉えるか? マーケティングの基礎として、顧客目線で考えることが前提です。その上で、イノベーションの普及条件(5つの条件)と照らし合わせることにより、市場の立ち位置や比較がより明確になります。 行動変数で顧客を理解? 顧客のセグメンテーションを検討する際には、デモグラフィックだけでなく、趣味や思考、価値観などの行動変数も考慮すると、顧客像を多角的に把握できます。これにより、市場のトレンドを捉えることが可能となります。 さらに、成長性を評価する6Rなどのスクリーニングを行うと、ターゲティングが現実的になり、場合によってはターゲティングの変更も視野に入れることができます。 ネーミングで価値をどう伝える? ネーミングをする際も、顧客が抱く「負のイメージ」を想定し、それを解消することが重要です。これにより、顧客が求める価値を理解し、自社製品の価値を効果的に伝えることができます。 ただし、競合と比較して製品開発やプロモーションに集中しすぎると、「差別化の罠」に陥ることがあります。本来提供すべき価値を見失い、競合との差別点ばかりに焦点を当てる危険性があります。マーケッターとしては、この点にも注意が必要です。 結果として学んだことは、顧客が常に起点であることを理解し、様々な関係性をフレームとして当てはめることです。 SNS戦略で何を重視する? 自社のECサイトやSNSでの戦略構築においても同様で、顧客目線の整理、行動変数による理解、そして6Rを鑑みた顧客理解が必要です。主観に頼らず、顧客が何を求めているのかを理解し、コミュニケーションを図る戦略立案が求められます。主観でSNSの発信内容を決定するのではなく、顧客との接点を心理的変数で設定することを実行したいと思います。 コーポレートSNSでは次のステップが必要です: 1. フォロワーのサイコグラフィック変数を導き出す。 2. 顧客理解を基に、6Rスクリーンニングの仮説でターゲット理解と機会を洗い出す。 3. 競合とのポジショニングを考慮し、実行すべき戦術を決定する。 4. その測定を繰り返すフレームワークの作成を実践する。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

マーケティング入門

常に新鮮な学び体験をあなたに

付加価値はどう生まれる? 体験価値を考える際、単に商品を提供するだけでなく、その商品にまつわる体験が加わることで、独自の付加価値が生まれることを実感しました。まず、プラスアルファの体験を正しく把握し、顧客にとってポジティブな印象を与えることが、競合との差別化に直結する点に着目しました。ただし、同じ体験を単調に繰り返すと、その新鮮さや魅力は次第に減衰するため、顧客体験は常に更新し続ける必要があると感じます。 差別化の秘訣は? オンリーワンを実現するためには、まずユニークな差別化を打ち出すことが重要です。たとえば、ある企業は「結果にコミットする」という明確な軸を掲げ、顧客に真剣な取り組みを伝えている点が印象的でした。別の企業は、顧客ニーズの迅速な把握や納品、そして代替機の手配など、スピード面での優位性を存分に活かし、シンプルな設計によりコストを抑えながら高い利益を実現しています。 体験差別の効果は? また、モノを販売するだけでなく、体験を通じた差別化も有効であると感じました。たとえば、ある有名チェーンは独自の空間づくりや接客スタイルで、顧客に特別な居心地の良さを提供しています。このような工夫により、ブランド構築や顧客ロイヤルティの向上が実現し、激しい価格競争に陥らずに済む点が魅力的です。 魅力伝達はどう? 自社に置き換えると、宣伝広告に大きな予算をかけずとも、商品の持つ本来の魅力や価値を消費者に伝えることで着実に売り上げを伸ばしているケースを見ており、マネキン販売などを通じて消費者との接点を増やし、口コミやSNSを活用した広がりが期待できると感じています。 現場戦略は有効? さらに、現場で扱う業務用商品の新規取り扱いの提案や、競合との差別化を図る戦略を考える上では、実際に試飲・試食を行ったり、試供品を提供して顧客に実体験してもらう取り組みが効果的です。その際、商品の味わいやバランス、歴史、供給体制などの差別化ポイントを徹底的に伝えること、そして営業面で迅速かつ柔軟な対応を行うことが、他社に対する大きな強みとなると感じました。

クリティカルシンキング入門

MECEで問題をスッキリ解決する方法

物事を分解する学びの重要性とは? 物事を分解する方法について学んだことが非常に有益でした。まず、全体像を明確に定義し、目的に沿って切り口を設定し、MECE(漏れなく・ダブりなく)の原則を用いて事象を分解します。これには、「層別分解」、「変数分解」、「プロセス分解」の3つのパターンがあります。 分解手法の具体例をどう活用する? 層別分解では、「年齢別」、「性別」、「季節別」といったように、特定のカテゴリーごとに事象を分けます。変数分解では、「売上=客単価×客数」のように、事象を構成する要素に分解します。プロセス分解では、ある事象のプロセスを詳細に書き出し、そのどこに問題があるのかを分析します。 MECEが導く次の一手は? 分解する際には、異なる視点が混在しないよう注意し、まずは試みてみることが重要です。たとえ分解した結果、特筆すべき点が見つからなかったとしても、それは「ここには差がなかった」という価値があり、他の観点での分解につなげることができます。失敗と捉えず、次の行動に繋げることが大事です。 これを売上分析に応用すると、例えば「年齢別」、「性別」、「季節別」に層別分解したり、「売上=客単価×客数」という変数分解を用いたり、プロセスの中の問題点を探るプロセス分解が有効です。 DX人材育成にMECEはどう役立つ? また、DX人材育成に関する施策を進める際の根拠としても使えます。例えば、社員のデータ活用率を上げることを目的に、現状を把握し、MECEを活用して問題点を明確にすることで対策を立てることができます。 意思決定の効果をどう高める? 意思決定時には、情報をMECEで分類し、優先順位を決める手法が活用できます。これにより、どの情報を基に判断すべきかが明確になります。また、プロジェクト進行中に意見が割れた際には、目的を再定義し、網羅的に議論ができているか確認することで、考慮漏れがないかをチェックすることができます。 このように、MECEの原則を用いることで、さまざまな問題や課題を効果的に分解し、具体的な対策や判断を導き出すことができます。

マーケティング入門

顧客志向で進化する商品企画

講座で何を掴んだ? 講座を通じて「顧客志向」という重要な概念を学び、それを振り返ることで、いくつかのポイントを思い出しました。特に以下の4点は今後の業務に活かしたいと思います。 大事なポイントは? まず、ターゲット層の重要性についてです。商品開発やマーケティングにおいて、ターゲット層のニーズや行動パターンを深く理解することは極めて重要です。次に、競合との差別化についてです。競合と差別化を図るためには独自の価値提案が必要であり、セグメンテーションも欠かせません。さらに、チャネル戦略についても考えました。商品の特性やターゲット層に合わせて最適な販売チャネルを選ぶことは重要で、マーケティングの4Pに含まれる要素です。また、行動することの大切さも学びました。毎回の授業の中で、今日からできる具体的なアクションを考え、実際に行動することで新たな気づきを得ることができました。 ライブは何を促す? ライブ授業では意見交換を通じて忘れていた部分を思い出すことができ、講座の内容を改めて振り返る良い機会となりました。特に、リニューアルに関する質問をしましたが、それも今後の業務に活かす観点から行動に移していくつもりです。 ブランドの意義は? ブランド理解についても自分にはまだ不足があると感じました。顧客に対して、自社やブランドとしてどのような方向を目指しているのか明確にする必要があります。これを改めて整理する機会を設け、自分が考えた商品が顧客志向に沿っているか確認したいと思います。また、チーム内でも意見をすり合わせ、方向性が間違っていないかや他の考え方がないかを深掘りしていくつもりです。 プロジェクトはどう進む? このような取り組みの一環として、商品企画チームでブランド理解を深めるためのプロジェクトを立ち上げることにしました。顧客視点やブランド整理、プロジェクト管理の観点からも学べると期待しています。半期を目標に、プロジェクト内容とスケジュールを考え始め、まずはチームメンバーに相談することからスタートします。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

「差 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right