データ・アナリティクス入門

あなたも解決者に!ナノ単科で学ぶヒント

問題解決フレームは? アンドリューが経営する音楽スクールのB校を題材に、問題解決のフレームワークについて考えることができました。問題解決は「What(何が問題か)」「Where(問題はどこで起きているか)」「Why(なぜ起きているのか)」「How(どう解決するか)」の4段階で進めるのがポイントとなります。 赤字経営の理由は? まず、Whatですが、B校の本質的な問題は、計画上は年間黒字を見込んでいたにもかかわらず赤字経営に陥っている点です。計画では年間黒字2,250千円が予想されていたのに対し、実際には5,150千円の赤字となり、経営の持続性が問われる状況です。 どこで問題発生? 次にWhereです。ロジックツリーを用いて問題を層別分解することで、原因が「生徒数の減少」と「費用の増加」という大きな観点に分けられることが見えてきます。生徒数減少については、ターゲット設定の不適切、広告・販促の効果不足、立地やアクセスの不利などが考えられ、具体的には地域特性を無視した集客戦略や講座の魅力訴求が不足していることが挙げられます。一方、費用増加に関しては、イベント開催費の計画超過、講師人件費の増加、稼働クラス数の減少による単価上昇などが要因として考えられます。 数字で見る実態は? さらに、変数分解では売上と費用を数値的に捉え、売上は「生徒数×単価」、費用は「固定費+変動費」と整理できます。計画との差異から、生徒数は計画の100人に対し実績は60人と大幅に下回り、イベント開催費や講師人件費の増加が費用超過の主因であると考えられます。 MECEって何? また、MECE(Mutually Exclusive, Collectively Exhaustive)の考え方にも注目しました。これは、物事を漏れなく重複なく切り分けることで、特に生徒属性の分析において「年齢」「職業」「経験」「通学距離」「入校動機」などの切り口が有効であると学びました。 知見を活かすには? この知見を踏まえ、Week1で自身の仕事であるマナー講師養成講座の販売促進に応用するため、以下のように整理しました。 なぜ受講者が伸びない? まず、Whatとして、受講者数の伸び悩みとターゲットへの認知不足が課題です。次に、Whereとして、ロジックツリーによる層別分解で、受講者数が伸びない原因を「ターゲティングの不明確さ」「広報・販促手法の効果不足」「商品自体の伝わり方の問題」に分類しました。具体的には、対象層が曖昧であったり、各チャネルの効果が検証できていないこと、さらにはカリキュラムや修了後の活用イメージが十分に伝わっていないことが挙げられます。 なぜ提案が足りない? Whyについては、顧客の属性や行動データが十分に収集・分析されず、地域別・職種別のニーズに応じた提案ができていないことが原因です。また、広告費や営業活動が感覚的に運用されている点も問題と捉えました。 どう解決策を見出す? 最後にHowとして、以下の解決策を提示します。まず、受講者データの属性分析を行い、年齢、職種、地域、受講動機などで顧客像の「見える化」を図ります。次に、ターゲットごとに訴求ポイントを整理し、例えば教職員向けには「学校教育に役立つ資格」、主婦層向けには「家庭と両立できる副業としての活用」、企業人事向けには「社員研修の内製化への貢献」を訴求します。 効果検証は進んでる? さらに、LPやチラシを用いた簡易なテストマーケティングを実施し、広告手法の効果検証を行います。併せて、導入校や協力企業とのネットワークを活かしたリファラル紹介制度や、メルマガ・LINEによる情報発信、オンラインの無料相談や体験講座など、申込につながる接点づくりも強化します。最後に、販促効果や費用対効果を定量的に記録し、次期キャンペーンやイベントの改善につなげる仕組みの構築を目指します。 計画は成功に繋がる? このアクションプランを実行することで、問題を構造的に捉え、具体的な改善策を計画的に推進できると考えています。

デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

戦略思考入門

差別化の本質に迫る学びの一週間

差別化とは何か? 「他社との差別化を図る」や「既存の仕組みとの差別化を図る」といった「差別化」という言葉は、戦略を練る上で欠かせないものです。しかし、今回の学びを通じて、自分が提示したアイディアが本当に差別化されているのかどうかに疑問を感じるようになりました。「差別化」を考える際には、他者との共通点も徹底的に事前調査する必要があります。学習以前と比べて「差別化」という言葉を簡単に使うべきではなく、もっと分析や検討が必要だと感じました。 どのフレームワークを利用? 今週は、大別して二つのフレームワークを学びました。一つ目はポーターの提唱する基本戦略、そして二つ目は自社の競争優位性を活かして差別化を考える「VRIO」です。「VRIO」の中で特に「模倣困難性」については、これまで驚くような新しいアイディアにばかり注目していましたが、実は「偶然そうなった出来事」や「因果関係が不明な出来事」といった要素も含まれることを初めて学びました。また、独自の強みがあったとしても、環境や時代の変化を見落としてしまえば競合劣位になることも知りました。徹底した情報収集はやはり欠かせないものです。 競合分析のポイントは? まずは自社の競合について考えてみました。以下の三点が思い当たりました。 1. 業種から考える競合(航空会社として):国内外の航空会社、他のアライアンスなど。 2. 特徴から考える競合(公共交通機関として):新幹線、長距離バス、船、今後はリニアなど。 3. 提供する価値から考える競合(フルサービスキャリアとして):他社フルサービスキャリアや高級ホテル、料亭など。 顧客にとっては利用目的が異なるため直接対決にはなりませんが、「以前経験した良質なサービスを他でも受けたい」と考える顧客がターゲットとなり得ます。そのため、航空業界他社だけでなく、高品質なサービスを提供する他業界にも目を向ける必要があると感じました。競合分析は一朝一夕にはできない深い作業であることを学びました。 顧客が本当に求めるものは? 桜島と鹿児島市を結ぶフェリーの中で営業するうどん屋さんの創業者が、「お客さんが喜ぶもの」を考えた結果、短い船旅でも食べられるうどんを提供するようになったという話を聞いたことがあります。「顧客にとって価値があるかどうか」は、「お客さんが喜ぶかどうか」と考えることと同じです。そう考えると、顧客視点で徹底的にアイディアやサービスを考えることはそれほど難しくないと感じました。 情報収集の方法は多様に 私はサービス業に従事していますが、サービスの差別化を考えるにあたり、確実性が高い情報を得るためにはユーザーとして実際に利用することが重要だと思います。しかし、コストや時間の面で効率的とは言えません。書籍やウェブサイトのようなフォーマルな情報源から、YouTube動画や口コミといったカジュアルなものまで、様々な手段で情報収集をすることは効率が良いです。実体験と他者の体験を掛け合わせることで、より確度の高い情報収集が可能であると思い、実践したいです。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

戦略思考入門

優先順位のつけ方で仕事の効率化が加速する

顧客利便性をどう高める? <やらない、を選択する戦略> ①捨てる方が顧客の利便性を増す 1勝9敗。うまくいかないことは早々にやめ、成功する1割にフォーカスすることが重要です。選択と集中ができることで、自社サービスを磨き上げることができ、品質が上がり顧客にも好影響をもたらします。 惰性を打破するには? ②昔からの惰性に流されない 何が惰性なのかを知るには、新入社員などの客観的な視点が役立ちます。また、トラブルを通じて必要不要を精査するタイミングを持つとよいでしょう。 専門家の活用を考える ③餅は餅屋に任せる 自社で行う必要がないことは、専門家に任せる勇気を持ちましょう。 トレードオフをどう乗り越える? <優先順位の立て方> ◆◆トレードオフ 複数の要素がトレードオフの関係にある場合、全てを同時に達成することはできません。そのため、何かを捨てる必要があります。これは日常や仕事でも常に発生します。 効用を最大化する方法は? ①効用の最大化 効用の無差別曲線の考え方を用いて、トレードオフ関係にある要素のバランスをとり、効用が最大化するポイントを見つけることが重要です。 優先順位の明確化をどう進める? ②方向性の明確化 自分たちが何を優先し、何を犠牲にするかを明確にし、重視する要素に全力を傾けることが大切です。 ブレークスルーの道は? ③ブレークスルー トレードオフにある複数の要素を同時に実現できる方法を探ることも必要です。 優先順位の付け方に苦手意識を持っていましたが、今回のワークを通じて、まず情報を整理し、ROIの観点で見ることの重要性を感じました。曖昧ではなく、明確な判断基準を持つことが求められます。また、判断に必要な情報が全て揃わない場面もありますが、その場合には仮説思考を持つことが大切です。思考強化のために、クリティカルシンキングの講座も受けたいと思いました。 撤退の難しさとは? 「当たらない事業はさっさと辞め、成功する1割にフォーカスする」という例がありましたが、やめどきの見極めは非常に難しいと感じました。以前新規事業を進めた際、結局撤退しましたが、もっと早く辞める決断ができたのではないかと考えています。 成果に基づく優先順位設定 施策に対する優先順位をつけるためには、売上や利益などを定期的に振り返る習慣をつけることが重要です。その際、会社として何を重視するか、会社のありたい姿までを考慮し、コミュニケーションを取りながら優先順位を決めていきたいです。例えば、広告におけるブランディングと新規顧客の獲得はトレードオフですが、現在の会社の注力点を踏まえてROIの視点とともに意思決定していくべきだと感じています。

戦略思考入門

規模の経済性を超えて、真の競争力を手に入れる方法

戦略的行動をどう実現する? 戦略的な行動をとるためには、古くから存在しビジネスの定石とされる様々な法則やフレームワークを知り、それらの原理や前提条件、例外パターンを含めた本質をきちんと理解し、適切に用いることが必須であるということを学びました。 ビジネスの定石を再確認 WEEK5で取り上げられた「事業経済性」というメカニズムを例に、自らを振り返ると、規模の経済性がそもそも効かない場合や、効くとしても非常に限定的であることに気づきました。そのため、ターゲットを絞りサービスの価値を高めることでネットワークの経済性を活かし、そこで浮いた経営資源を集中投下して経験曲線を活かす。このように、範囲の経済性へつなげることでコスト低減が実現できそうだと感じました。しかし、これまで私はビジネスの定石を「感覚的」に理解していただけだったことに気づきました。 中期経営計画の重要性 変化の激しい時代と業界において、中期経営計画を立てる意味と重要性を再認識しています。次期中期事業計画の策定に向けて、ビジネスの定石を本質的に理解・整理し直し、一年近くの時間を有効に活用したいと思います。 視座と視野を意識した仮説思考 周囲の協力を得ながら、「高い視座と広い視野」「一貫性と整合性」を意識しつつ、不確実な情報の中でもハイサイクルで仮説検証を行う仮説思考でビジネスの定石を適用します。また、実際に適用した結果について関係者と共有し、複数の視点を基に明確な判断基準を持って投資対効果を意識し、比較検討・取捨選択を行っていきます。 事業計画策定の精査ポイント 事業計画の策定にあたり、次のポイントを精査します: - 目指すべきゴールは何か - 現経営資源に何があるのか - 省エネはどこまで追求するのか - ゴールに到達するために「やるべきこと」「やらないこと」は何か - ターゲット顧客は誰か - 自社はターゲット顧客にどのような価値を提供するか - それは本当に顧客が求めているものか - 独自性(強み、差別化ポイント)は何か - 独自性で本当に差別化できているか - 独自性は実現可能か、長期的に競争優位性を持続可能か - 事業経済性で効くものは何か、なぜ効くのか - 他社事例で適用できるものはないか 定石を駆使した事業計画 今回の講座を通じて、3C分析、SWOT分析、バリューチェーン分析、PEST分析、5Forces分析、ポーターの基本戦略、シナリオ・プランニング、VRIO分析、ジョン・コッターの8段階のプロセス、事業経済性など、10個以上の定石を学びました。事業計画を策定するにあたっては、これらの定石を意識しながら一つずつ理解し直し、他社事例を集めて研究しながら適用を進めていきたいと思います。

データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

戦略思考入門

経済性の本質を深堀りして学ぶ方法

ビジネス法則の理解を深めよう ビジネスの法則を正しく理解し、それを武器にすることは重要だと感じました。「規模の経済」はよく用いられる法則のひとつですが、大量に生産や発注をすれば、一つ当たりのコストが下がるという単純な理解しかしていませんでした。どんな場合でも規模の経済が適用できるわけではなく、固定費と変動費に分解したり、時点を広げて考えたりすることが大切だと学びました。 経済性の種類に注目する 事業経済性とは、何かをするほどコストが下がることを指します。規模の経済、経験効果、範囲の経済、ネットワークの経済、連結の経済などがあります。差別化を理想としていますが、すべての領域でそれを実現するのは難しいため、経済性にも注目する必要があると感じました。この点で、経済性といえば規模の経済とほぼ同義と考えてしまっていましたが、さまざまな経済性に着目することで思考の幅を広げていきたいと思います。 範囲の経済性を活かす方法は? 範囲の経済性については、すでに持っている資源を他の事業や領域でも活用し、コスト削減を図ることが大切です。 習熟効果においては、ナレッジの蓄積や学習に熱心な組織は習熟効果が高いことが分かりました。市場成長期に高いシェアを獲得し、競合より早く多くの経験を積むことで、先行して習熟効果が得られます。しかし、自社ではマーケティング部門ではナレッジ蓄積の意識がまだまだ低い状態です。他企業の話を聞くと、習熟効果を意識している企業も多く、自社の改善点を見つけるきっかけになりました。 経済性と差別化のバランスとは? 経済性の追求(特に規模の経済)は差別化できない企業の逃げのアクションという印象が強かったですが、差別化は理想的なものではあるものの、すべてを実現するのは難しいと理解しました。そのため、経済性との両立が必要であると再認識しました。 特に範囲の経済については、すでに持っている資源を他の事業や領域でも活用することが重要です。例えば、組織内でのナレッジ共有や連携を強化することによって、範囲の経済メカニズムを働かせることができます。最近、事業部制を導入したところで範囲の不経済が生じていますが、商品部門との人事異動や情報連携強化により、範囲の経済が実現できています。 組織内での法則の活用法は? チーム内に法則を用いて説明する機会がよくありますが、改めて本質を調べてから活用し、自分に都合よく説明しないように気をつけます。 また、来週の議論に向けて、範囲の経済について深く考え、自チームのみならず部門全体にとってのメリットを追求していきたいです。習熟効果についても他企業のナレッジ蓄積や学習の情報収集を行い、あるべき姿を考えていきます。

戦略思考入門

フレームワークで見える新たな経営視点

Week1の学びは何だった? 改めてWeek1から学んだことを振り返る機会がありました。フレームワークにはさまざまな種類が存在しますが、その活用方法は場面によって異なります。これからも、「自分が明らかにしたいことは何か」「それを明らかにするためにはどのフレームワークが適しているのか」を判断し、定期的に振り返りを行っていきたいと思います。 フレームワークで整理できる? 1つ目の学びは、フレームワークを用いて散乱した情報を整理することです。目的(ゴール)だけを設定しても、戦略をどう立てるべきか、最短経路はどこかを示すのにフレームワークは役立ちます。例えば、3C分析などは、自社にとどまらず、他社や顧客を取り巻く環境を整理するのに有益です。これらの方法は、自分だけでなく関係者も巻き込んで精度を高める必要があります。 差別化はうまくできている? 次に重要なのは、差別化ができているかどうかです。ターゲットとなる顧客像が明確でなければ、自社の強みをどのように活かせるか、また他社に模倣されやすいかどうかの判断が難しくなります。 定量的な判断は可能? また、捨てる基準を定量的に説明できるかも重要です。過去にはざっくりとした工数や手間で取捨選択していましたが、これは良い判断とはいえません。投入時間に対してどれだけ利益が生まれるか、費用対効果を考慮すべきです。また、自分の不要な美学で行っている定常業務を改め、自分自身が行う必要があるかを見直す必要も感じました。 市場原理について理解できる? さらに、市場原理の理解も必要です。例えば、多く発注すれば単価が下がるという表面的理解だけでなく、規模の不経済といった基本的メカニズムも学びました。これにより、施策を行う際の説得材料やリスク管理に大いに役立ちます。 新規・既存事業はどう活かす? これらは新規および既存の事業に広く活用できると感じています。新規事業においては、ゴール設定やターゲットの明確化、他社環境の把握といった具体的な施策の基本設計に役立ちます。そして、既存事業においては、費用対効果の検討や捨てるべき基準を定量的に判断することで、より合理的な経営判断が可能になります。 どのように実行する? 具体的には、新規事業の提案を受けた際には、具体的なゴール設計を自分の言葉で説明できるレベルで共有し、もし詰められていない場合は一緒に策定まで伴走していきます。また、既存事業については、月に一度取捨選択を行い、工数と売上を算出し、割に合わない場合は決断をもって捨てるとともに、空いた工数で何を行うかアクションプランを決定することを心がけています。

マーケティング入門

体験が輝く!ナノ単科の学び

顧客の価値はどう変わる? 顧客のニーズや知識が日々アップグレードしている現状では、単に商品力だけでなく、機能的価値と情緒的価値の両面で付加価値体験を提供する必要性が高まっています。 接触回数で効果は? まず、顧客との接触回数を増やすことで、その体験と感情を結びつけ、情緒的な価値を生み出すことが可能です。接触の機会を積み重ねることは、企業の資本力に左右されずに成果を上げる手段となりえます。ただし、コストパフォーマンスとのバランスを考慮する必要があります。 体験で差別化は? 体験を考える際の重要なポイントは以下のとおりです。まず、商品に関連する体験が提供する+αの価値を正しく把握すること。そして、体験を通じて強力な差別化を図ることが可能であり、何よりポジティブな体験であることが大切です。いずれの場合も、顧客のニーズや状況を正確に把握するとともに、その体験が常に高い質を保つよう努める必要があります。また、顧客の要求は年々上昇するため、常に見直しと改善を重ね、一歩先の付加価値を創造していくことが求められます。 付加価値の重要性は? 当社にとって、顧客との接触回数と付加価値は大変重要な視点です。少数精鋭で競合他社と戦うためには、資本力以外の面での強みとして、これまでの付加価値の提供をさらに強化し、戦略的に活用することが不可欠です。特に、候補者との接点を増やし、その方法を工夫することや、サービスの付加価値部分をより明確に打ち出すことが重要となっています。 面談方法を見直す? 具体的な改善策として、まず接触回数と方法の見直しがあります。これまで一度の面談でヒアリングから情報提供までを行っていましたが、時間が不足し後半が急ぎ足になっていたため、面談を2回に分けることを検討しています。初回はヒアリングに専念し、2回目に求人の提案を行う方法です。また、候補者がどの会社を受けるか判断するタイミングでは、メールでの返信ではなく、電話で直接確認することで「すぐそばにいるエージェント」としての付加価値を提供したいと考えています。 多角的支援は魅力? さらに、これまで「転職支援」を主なサービスとして打ち出してきましたが、実際には転職をきっかけに人生相談、コーチング、モチベーション向上のサポートといった幅広い価値を提供している点が、他社に比べて高い決定率の背景にあると考えています。今後は、この強みを明確に言語化し、発信していくことで、より一層のサービス向上を目指していきます。

「情報 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right