データ・アナリティクス入門

学生退学率を下げるための分析法を学ぶ

比較で分析を深めるには? 「分析は比較」という考え方が非常に印象に残りました。単に分析対象を見るだけでなく、他と比較することでその状態を分かりやすく確認できます。また、比較の際に「目的」や「分析に必要な要素」を考慮することで、ぶれない分析が可能になると学びました。 学生の退学率にどう対策する? 私は大学で勤務しており、学生データの分析を頻繁に行っています。特に「入学した学生の退学率をどのように防ぐか」という大きな課題が常にあります。この問題を解決するためには、問題を適切に切り分けて、それに対する適切な施策や提案を行う必要があると感じました。 退学率低下の具体策は? 具体的には、「学生の退学率を低下させる」といった目標が定まっているので、まずはその問題を要素ごとに分けて考えます。例えば、退学率の過去の推移を確認し、変動が大学内部の問題によるものなのか、それとも外部要因によるものなのかを区別することから始めます。

データ・アナリティクス入門

全体をとらえるデータの物語

全体像と仮説の関係は? データ分析に取り組む際、単にあらゆる情報をむやみに収集するのではなく、全体のストーリーを大切にすることが印象に残りました。アウトプットのイメージを持ってデータ収集を行うと、目的に沿った情報が得やすく、分析の方向性も明確になります。また、仮説を立てる際には、フレームワークを活用することで多角的な視点から仮説を検討できますが、その検証に必要なデータは個々のアプローチによって異なるため、どの視点から何を分析するのか、目的を明確にすることが重要であると感じました。 データ収集のポイントは? 現場でデータを収集する方法として、アンケート調査やヒアリングが主な手法として挙げられます。アンケート項目を作成する際には、その趣旨を明確にし、複数の仮説と全体のストーリーに沿った質問を工夫することが求められます。こうした意識を持って、目的に合った質問項目を作成し、データ収集に臨むことが重要であると考えています。

データ・アナリティクス入門

データ分析で気づく改善の一歩

データ分析ってなぜ? 全体を通してデータを分析する重要性を改めて実感しました。今まであまり意識していなかったMECEの考え方―漏れや不足がない状態―について、比較の段階があることやそれぞれの段階で分かる情報の違い、そして明確な発見があるという点が印象に残りました。 着地見込みの工夫は? また、着地見込みを作成する際、単価を中央値で表示するなど細かい部分にも応用できる点を体験でき、シミュレーションに積極的に取り入れていきたいと感じました。今後は、シミュレーション結果や予算、実績とのGAP分析にもこれらの方法を活用し、より精度の高い検討を行いたいと思います。 GAP検証で何が起こる? さらに、シミュレーション実績との比較をもとにGAPの仮説検証を実施し、次の期には軌道修正が図れるよう動いていく予定です。まずは表やグラフを作成して比較し、そこから差異分析を行って仮説を立て、改善に結びつけていきたいと考えています。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

マーケティング入門

シーンで変わる製品の本当の価値

どんなシーンが大切? 商品の機能そのものだけに注目するのではなく、どのような場面で顧客が求めるかを起点に考える重要性を実感しました。同じ防水性能であっても、現場での使用と雨天時の対策では、求められる価値や伝え方が大きく異なります。ターゲットを変えることで、同一商品でも別の価値を再定義できるのだと感じました。 どう企画を実現する? また、セグメンテーションや6R、ポジショニングといったマーケティングのフレームワークを確立し、自社の新しい価値をしっかりと打ち出す必要性があると学びました。これらの手法を活用することで、従来の属性別アプローチにとらわれず、行動や価値観、具体的なシーンに基づいた提案が可能となり、新たな顧客層へアプローチすることができると考えています。同時に、取引先に対しても市場性や費用対効果をロジカルに説明することで、企画提案や商談の成功につなげるための提案力と説得力が向上する点も印象に残りました。

データ・アナリティクス入門

目的と仮説で磨く分析の力

分析ってどう理解? 分析とは、ものごとを分け、比べることだと改めて理解しました。具体的かつ明確に整理することで、より良い意思決定に役立てる手法であるという基本的な定義を再確認できたと感じています。分析を進める上では、目的設定と仮説設定がいかに重要かという点が特に印象に残りました。 目的設定は何が必要? まずは、分析の目的を明確にして、どの意思決定に結びつけたいのかを整理することが大切だと考えています。その上で、目的に合わせた仮説を立て、膨大なデータの中から役立つ情報を見極める方法を実践していきたいと思います。 振り返りの進め方は? また、自身の業務を振り返り、データを活用して改善したい点を整理し、どのようなデータを収集しているのかを把握することから取り組みたいと考えています。一つのテーマに絞り、目的設定、仮説設定、そして分析の順で自分なりに実践を進めることで、より良い結果を得たいと思います。

マーケティング入門

機能を超える、体験の魔法

機能と情緒の違いは何? 商品やサービスから顧客が得られる価値は、大きく「機能的価値」と「情緒的価値」に分けられます。機能的価値だけの場合、他社に簡単に模倣されてしまう恐れがあるため、体験としての情緒的価値を提供することで、より差別化が可能となり、選ばれる商品やサービスを確立できると理解しました。 情緒の価値、なぜ大切? メーカーは特に機能的価値を重視しがちですが、現代は多くの商品が市場に出回っているため、情緒的価値を高めることが必須です。消費者の購入プロセスにおける心理を考慮し、どのように自社製品を差別化できるかが重要だと感じました。 体験で差を出す鍵は何? 講義では、体験による差別化が鍵であると指摘され、社内にある資産が十分に活用されていない場合もあるとの話が印象に残りました。今後は、業務において顧客のニーズをしっかりと考え、どのように差別化を図れるかを具体的に検討していきたいと思います。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

挑戦と成長!ロジック思考の軌跡

アプローチはどう? 問題解決のアプローチとして、「what、where、how、why」を意識することが非常に印象に残りました。同時に、分析において要素を漏れなく、ダブりなく分けるmeceの考え方にも大変共感しています。 要因分析は? 担当している障害分析の業務では、要因分析でmeceを意識して分割することが重要だと感じています。しかし、実際の作業では、完全にmeceを実現するのは難しく、ロジックツリーを併用しながら進めていく必要があると考えています。 ギャップはどう? そのため、まずはあるべき姿とのギャップに着目し、meceを意識しながら自ら手を動かしてロジックツリーを作成することに取り組もうと思っています。経験を積むことで、ロジックツリーの精度も次第に向上していくはずです。 協力はどう? もちろん、作業の途中では他のメンバーの知見を取り入れることも重要だと考えています。

クリティカルシンキング入門

整理で広がる思考の扉

ロジックツリーの効果は? 自身や他者が持つ思考のクセや偏りを踏まえ、ロジックツリーを活用することで、偏りの影響を受けずに考える訓練ができるという点が印象に残りました。思考のトレーニングを継続することで、より客観的に考える力を養いたいと考えています。 取引先対応のポイントは? また、取引先との取り組みを整理し、どこから手を付けるかを明確にするためにもロジックツリーの利用が役立つと感じています。情報を整理し全体を俯瞰することで、抜け漏れや偏りを防ぎながら業務を進めることができると考えています。 実行計画のコツは? 具体的な進め方は、まず取り組み内容をリスト化して重要なポイントを確認し、ロジックツリーを作成してテーマごとに情報やその関係性を可視化します。その後、重要度や影響度に応じて優先順位を決め、計画を実行しながら進捗をチェックし、必要に応じて柔軟に調整していくという手順です。

マーケティング入門

受講生の気づきが未来を拓く

なぜ売れたのか? 実例に沿って、なぜある商品が売れたのかを考えることは今まで経験していなかったため、とても印象に残りました。自分がよく知る商品についても同様に、なぜ売れたのか具体的な理由を探っていきたいと思います。また、行動観察を行ったことがなかったため、まずは身近なところから実践してみる意欲が湧いてきました。 実際の行動はどう? 新規システムを開発する際には、これまで社長からの指示に従ってシステムを作ってきましたが、その結果、真のニーズが捉えられておらず、売れない原因になっていたと感じます。今後は、社長が想定する利用者像に留まらず、実際に利用者の行動を観察し、深いインタビューを行った上でシステムのコンセプトを策定していくことが重要だと実感しました。この点を踏まえ、予算申請にも利用者観察やインタビューのプロセスを組み込み、本当に解決すべき課題を明確にしていきたいと考えています。

データ・アナリティクス入門

ひらめきを引き出すMECEの力

MECEでどう選ぶ? アイデア出しのプロセスで、MECEという手法を用い、全体像の中からアイデアを絞り込む方法が特に印象に残りました。たとえ評価基準で最終的に採用されないアイデアであっても、いったんすべて洗い出して評価することで、新たなチャンスや問題点を発見しやすいと感じました。 階層分析で何が見える? また、プロジェクトにおけるアイデア出しでは、階層ごとに分析することで、さまざまな発想が生まれやすくなる可能性を実感しました。同じく、課題を分析する際も、階層別や変数別に整理することで、より具体的な問題点に焦点を当てることができると感じました。 なぜ体感するのか? 現在は、アンコンシャスバイアスの解消を目指した若手ワーキング向けのフレームワークを企画しています。その一環として、MECEを取り入れたグループワークの時間を設け、同僚と一緒に体感する場面を設定したいと考えています。

「残り」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right