アカウンティング入門

P/Lで読み解く戦略の扉

コンセプトとP/Lは? P/Lの見方を理解する中で、企業のコンセプトとP/Lのバランスが非常に重要であると実感しました。P/Lから仮説を立て、どの部分で利益を生み出していくのかを考察することで、会社の方向性や戦略の正しさが見えてきます。 戦略の整合性は? その上で、まず自社の分析を改めて行い、コンセプトと利益構造の整合性や、今後の戦略・方向性が適切に合致しているかを確認することが大切だと感じます。具体的には、以下の点を重視しています。 ① 戦略立案時、特にキャンペーンや市場拡大を目的とする場合に、P/Lを基に戦略の妥当性を検証する。 ② コンセプトとP/Lの分析結果から、個々の施策が会社全体の戦略と一致しているかを判断する。 ③ 自社の定期的な分析と共に、競合他社の動向を把握し、コスト競争か付加価値の提供かを見極めた上で、適切な競合対策を検討する。

データ・アナリティクス入門

ディスカッションで磨く仮説力

仮説の重要性は? 仮説とは、ある論点に対する仮の答えを意味し、結論の仮説と問題解決の仮説の2種類があると理解しています。仮説を立てる際は、その正しさにこだわるよりも、複数の異なる視点から意見を出すことが重要です。また、仮説を証明するためには、さまざまなデータを収集し、有効性を検証していく必要があります。 分析の進め方は? これまで、業務でデータ分析を進める際には、事前に仮説を立てることなく、集計や加工、可視化の手法に頼って分析を進行してきました。しかし、今後は、3Cや4Pといったフレームワークを活用し、チームのメンバーとのディスカッションを重ねながら、複数の仮説を検討していく方針です。 結論への道筋は? このプロセスを通して、より論理的かつ多角的な視点から分析を進め、最終的に納得のいく結論を導き出すことを目指していきたいと考えています。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

比較が切り拓く説得力

何を比較する? 「分析の本質は比較である」という考え方を基に、分析を行う際には何を比較の対象とするのかを明確にすることが大切だと感じました。また、比較対象が適切かどうか、つまり条件ができるだけ揃っているかを検討することで、説明する相手にも説得力を持って納得してもらえると考えました。 数値変動の理由は? 商品の活用数値に大幅な変動があった際は、原因分析が必要です。その際、単に昨年度同時期の数値を比較するだけでなく、同期間の環境―追い風か向かい風か―を把握することで、より説得力のある分析が可能になると思います。これらの情報がすぐに確認できるよう、ファクト元の整備も重要だと感じました。 業務経験をどう活かす? 特に疑問点はありませんでした。今後は、皆さんの業務経験を参考にしながら、さらに多角的な観点で分析を深めていければと思います。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

クリティカルシンキング入門

主張と根拠で磨く思考の一歩

問いと答えで学ぶ理由は? 今週はクリティカルシンキングの振り返りを行い、WEEK1の自分の回答を再確認しました。問いと答え、すなわち主張と根拠のシンプルな構成が印象的で、問いを明確に設定し、その問いだけに集中して回答するという行為の難しさを実感しました。 お客様の課題は核心? また、商談時にはお客様からシステム構築による課題解決のご相談をいただくことが多い中で、お客様の課題が何か、本当にその課題が核心なのか、そしてその解決策が改善につながるのかを、主張と根拠をセットで検討する必要があると感じました。講義で「早く答えを導き出すには常に考え続けることが大切」という話が印象深く、思考の切り替えを意識して反復することで、そのスピード感を自分のものにしたいと思います。今後は、何かを考える際に必ず主張と根拠を意識する行動を心がけていきます。

デザイン思考入門

ルールに共感、未来への一歩

研修で共感の秘訣は? 私の担当業務では、ルールや運用の新規導入や見直し、そして研修の実施といった機会が多く、いずれもデザイン思考の考え方を活用できると感じます。実際に、研修の準備過程で過去に実施したアンケートや現状の課題分析に基づきテーマを設定し、段階的にコンテンツを作成しながら上司や部門メンバーに確認を重ねるというプロセスは、デザイン思考の共感やフィードバックの重要性を再認識させました。 他部門との連携は? 一方で、ルールや運用の新規導入においては、研修と同じ手法を十分に活かせていない面があり、今後は社内の他部門の立場に立って内容を検討する意識を持ちたいと考えています。まずは、通常業務の中で他部門とのコミュニケーションを機会として捉え、相談や監査の際にさりげなく意見を聞くことで情報収集を進めていければと思います。

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

クリティカルシンキング入門

分解思考で発見する全体像

どうやって視点を変える? 分解して考えることや、複数のパターンで検討する視点が印象に残りました。普段、考えが一方向に偏りがちだったのですが、問題を分解して、さらにその内容を複数の観点から考察することで、物事の見え方が大きく変わり、結果にも違いが出ると実感しました。 どう書類の整理を進める? 書類作成において「漏れなく、ダブりなく」という指摘をよく受けます。実際、まだ情報の抜けや重複が散見されるため、まずは紙に全体を書き出し、各部分をしっかりと繋ぎ合わせる習慣を付けたいと思います。今後のタスクでは、問題を分解して簡単な図にまとめるなどし、より効果的な整理方法を試してみるつもりです。 どう共に考えるべき? この「漏れなく、ダブりなく」という考え方を、さまざまな例を通じて皆さんと共に考えていければと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

「今後 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right