データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

リーダーシップ・キャリアビジョン入門

あなたらしさを引き出す未来への道

個々に合わせた指導は? 若手の人材育成に、これまでの一律なアプローチではなく、個々に合わせた目標設定が必要だと感じています。これまでは同じ話やワークを提供していたため、ゴールまでの道筋が曖昧になっていました。今後は、各自が目指す人物像や理想の姿を明確にし、その実現のために個別の指導を行いたいと考えています。また、前提となる環境要因に基づく情報提供が、やる気の向上にもつながると期待しています。 支援手法はどう変わる? さらに、メンバーに合わせた指示型、参加型、支援型、達成志向型のワークを取り入れ、全体ミーティングで共有することで、メンバー間の相互理解を深める計画です。異なるアプローチを柔軟に使い分けることで、それぞれの適性や経験を活かした支援が可能になると考えています。 業務配分のコツは? また、日常業務においては、どの業務内容をどのレベルのメンバーに割り当てるかを検討し、各自の目標達成への道筋を具体的に示すことで、メンバーの自立を促していきたいと思います。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

戦略思考入門

原体験が教える戦略の極意

どんな原体験が影響? 担当講師の原体験で語られた体育会系の経験談は、非常に納得できるものでした。一定の段階ではその手法が通用していたものの、マネジメントの重要性が増すと、視座が十分に上がらないことに気づかされました。また、あえて伝える内容を絞ること自体が戦略の一つであるという考え方にも大いに学びました。 どの戦略が伝わる? 戦略の立案においては、重要な内容をすべて盛り込もうとするあまり、情報が多すぎて本来のメッセージがうまく伝わらないというジレンマに直面しました。実際、何度かの質疑応答を経なければ意図が十分に伝わらない場面もあり、シンプルすぎず複雑すぎないバランスがいかに重要かを実感しました。 なぜ考え直すの? さらに、戦略を立案する過程で、自身の考えをアウトプットし、言語化する習慣の大切さに気づきました。一度考えた言葉をそのまま発信するだけでなく、「なぜそうしたのか」「それは何を意味するのか」を見直すことで、シンプルかつ洗練された表現を目指すようになりました。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

データ・アナリティクス入門

仮説で切り拓く課題解決の道

実践的な手法は? フレームワークを活用して問題解決に取り組む重要性を再認識しました。かねてから仮説を立てる意識はありましたが、3Cや4Pといったツールを具体的に活用する方法を学んだことで、より実践的なアプローチが可能になったと感じています。 仮説の違いは? また、問題解決の仮説と結論の仮説の違いや、過去・現在・未来といった時間軸での仮説の切り口についても学びました。これらの考え方を今後のフレームワーク活用に組み合わせることで、より柔軟かつ具体的に問題に対応できると期待しています。 地域課題の対策は? 日常業務においては、無意識のうちに問題解決の仮説と結論の仮説を使い分けながら、地域ごとの課題や効果的な解決策を検討してきました。特に、地域が抱える課題に対して多角的な打ち手を検討する際には、課題解決の基本となる仮説思考が大いに役立っています。一方、他地域の成功事例を取り入れる場合などにおいては、結論の仮説を意識することで、より具体的な方向性が見えやすくなりました。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

クリティカルシンキング入門

論理で拓く成長の道

なぜ系統分解する? 問題解決にあたっては、主観的な判断を極力排除し、各要素を系統的に分解する手法が重要であると学びました。MECEの考え方を参考に、まずはトレーニングを重ねながら、必要な要素を網羅的に整理する力を身につけたいと考えています。 どの角度で検証する? また、IT分野でのシステム設計や事後分析においては、目的や問題点を明確にし、多角的に分析する姿勢が求められると感じました。どの角度から、どのレベルまで検討するかを意識することで、より高い品質のアウトプットを実現できると実感しています。さらに、クリティカルシンキングの向上には継続的なトレーニングが不可欠であり、ビジネスシーンにおいても振り返りの時間を大切にすべきだと思いました。 自己評価はどう? 今後は、本コースで学んだ思考方法を活かし、過去の問題分析を振り返る中で、自分のアプローチが主観的になっていないか、また適切なレベルまで検証できたかを再評価し、次回以降のタスクに役立てていきたいと考えています。

クリティカルシンキング入門

課題解決の第一歩は全体像の把握

全体像を捉える重要性は? まずは全体像を捉えることが重要です。様々な視点から分解することで解像度が上がり、具体的な問題や、これまで気付かなかった問題にも気付けるようになります。このため、入ってくる情報に対して適切なフィルターを掛けて受信することが求められます。 問題解決のために何を心がける? 直面する問題に対して、まず全体像を知ることを心掛けたいと思います。その後、どのプロセスに課題や問題があるのかを分析していきます。この手法は、業務フローで全体を見える化し、どの工程でエラーが起きているのかを確認するのに適しています。頭の中でも自然にそれを描き、実践していきたいと考えています。 効率化のためにはどんな工夫が必要? 上記の通り、頭の中で全体像を想い描けるように、常に心がけることが重要です。その癖をつけるために、まずは紙などに書き出して頭の中を整理するように取り組んでみたいと思います。様々な業務の効率化を追求するために、MECEを活用していきたいと考えています。

マーケティング入門

自分も体験!新たな学びの扉

体験価値の必要性は? ある事例を通して、体験価値の向上がいかに重要かを実感しました。直近では商品の値上げが避けられない状況もありますが、値上げ後も購入してもらうためには体験価値の向上が不可欠です。これにより、他の商品との差別化が図られるとともに、環境配慮などの取り組みも情緒的な価値として受け入れられる可能性があると理解しました。 効率的アプローチ法は? 体験価値を高める方法について考える中で、顧客と直接会えるイベントは工数がかかる割にアプローチできる人数が限られていることに課題を感じています。しかし、今回の学習でその重要性を再認識し、より多くの人に効率的にアプローチする手法を模索する必要があると考えています。 企画立案の参考点は? また、自分の企画を立案する参考として、さまざまな企業が実施しているイベントやサブスクリプションサービスを実際に体験し、消費者視点からその魅力や改善点を考察することで、体験価値をどのように高められるかを探求していきたいと思いました。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right