クリティカルシンキング入門

数字が織りなす学びの発見

データ加工でどんな発見? 一つのデータでも、加工を行うことで新たな情報が浮かび上がることに驚かされました。例えば、比率を計算したりグラフ化することで、単なる数字だけでは見えなかった側面を発見することができました。このような手法は、社員の意識調査の分析にも応用できそうで、回答結果をグラフ化したり、各設問ごとに回答数に基づいて順位付けを行うことで、従来の数字だけでは把握しづらい新たな視点を引き出せると感じています。 仮説の偏りはどう防ぐ? また、データを分解する際には、仮説を立てることで具体的な傾向が明確になりやすい一方、固定概念にとらわれるリスクもあると実感しました。そのため、年代・性別・職種・居住地など、さまざまな角度からの分析を試みることで、全体像を見失わずに対応策を考えることが可能になると考えています。しかし、仮説に偏ってしまうと全体像が見えなくなる場合が多いため、他にも思考の偏りを防ぐ方法があれば、ぜひ教えていただきたいと思います。

戦略思考入門

迷いを突破!戦略フレームの魅力

思考の行き詰まりは? 3CやSWOT、バリューチェーン分析といったフレームワークを学ぶ中で、抜け漏れなく物事を考えるための軸は身についてきました。しかし、経験や知識が不足している部分では、思考が行き詰まることもしばしば感じます。自社や組織内の情報は何とかまとめられるものの、顧客や競合、市場など外部に関する情報収集は大きな課題となっています。 戦略はどう磨く? 組織の戦略、すなわち注力すべき領域を明確にするために、これらのフレームワークを活用したいと考えています。これまで3CやSWOTの手法に触れてきたものの、まだ十分に理解しきれていない実感があります。そのため、知見が足りない部分をどのようにカバーできるかを考えながら学習を進めていきたいと思います。 分析の壁は何? また、分析において何が難しいのか、そしてその課題をどのようなアイディアで解消できるのかという点について、具体的な議論を通じて考えを深めていきたいと考えています。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

データ・アナリティクス入門

A/Bテストで見える戦略のヒント

どうして問題が起こる? 問題の原因を探るためのアプローチについて学び、これまでの仮説中心の手法から一歩踏み込んだ問題解決の方法を理解できました。 A/Bテストで何がわかる? 中でも、A/Bテストを用いて施策の効果を比較し、仮説検証を繰り返すことの重要性を学びました。条件をできるだけ揃えて比較することで、より正確な評価ができる点に納得しました。 販売戦略にどう影響? 実際、あるスーパーマーケットの販売戦略を考える際にも、A/Bテストの手法は有用だと感じています。どの商品がより売れるのか、また企画がどの程度影響を与えるのか、複数の案を出して検証することは、戦略構築に大いに役立つと思います。 工数と時間の見直しは? ただし、A/Bテストを実施する際の工数と時間の按分については、今後さらに検討が必要だと感じました。これらの点を踏まえ、実際の業務にどのように活かすかを考えるうえで、引き続き学びを深めたいと思います。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

データ・アナリティクス入門

重みを知れば仕事が変わる

各平均値はどう選ぶ? 加重平均は以前から活用していましたが、その際は重み付けの解釈に重点を置いていました。改めて考えると、単純平均、加重平均、幾何平均、中央値といった各種の平均値は目的に応じて使い分けるべきですが、実際の業務では加重平均に偏りがちです。また、見える化の手法としても円グラフやヒストグラムが多用され、ばらつきは主に標準偏差の数値で把握しています。 業務量の重みをどう見る? 業務量の重み付けについては、データから抽出することで一層理解が深まり、数値化により説得力のある説明へとつながると感じています。今後も業務要件を数値から読み解く手法を積極的に採用していきたいです。 数値が語る本質は? さらに、業務量のヒアリング調査結果やシステム利用率など、数値のインパクトは重要な判断材料となります。これらを自分の業務タスクに組み込み、インプットデータのマネジメントを計画の初期段階から取り入れていくことが今後の課題だと考えています。

データ・アナリティクス入門

みんなで検証!次の一手へ

一方的打ち手はどう? ABテストの学習を通じ、これまで仮説に基づいて一方的に打ち手を実施してきた方法では不十分であると痛感しました。打ち手をただ試すだけでなく、条件を統一して比較することの重要性を実感し、現行の業務プロセスに問題があると感じるようになりました。 複数打ち手の検証は? また、課題に対しては通常一つの打ち手で対応しており、忙しさの中で次々と新たな打ち手を試す状態になっていました。今後は複数の打ち手を検討し、ABテストの考え方を取り入れたうえで、同一条件下でどちらが効果的かを慎重に比較・検証していきたいと考えています。 多角的視点の探求は? さらに、毎週の採用状況確認のミーティングでは、複数の打ち手を提案することで、先週までの分析手法も組み合わせながら多角的な視点から糸口を探っていく予定です。これを足掛かりに、次のステップに進むための具体的なアクションを模索し、ABテストの実施と継続的な検証を行っていくつもりです。

クリティカルシンキング入門

言葉で輝く学びの瞬間

正しい日本語の使い方は? 今週は、2つの学びがありました。1点目は、正しい日本語を用いて文章を書くことの重要性です。基本的なことながら、いい加減に文章を書くと、相手に稚拙な印象を与えてしまったり、ビジネス上の不利益につながることもあります。そのため、常に丁寧な言葉選びと構成に気をつけるよう心がけます。 ピラミッドを活かせる? 2点目は、ピラミッドストラクチャーというフレームワークの活用です。この手法を取り入れることで、論理の正しさを視覚的に確認することができ、グループミーティングなどで思考を整理する際に役立つと感じました。 実践でどう活かす? 今後は、メールを送る際に今日学んだ観点で文章をチェックするよう努め、自分では気づきにくいミスがあれば、ChatGPTを活用して添削を依頼するつもりです。また、ノートにメモを取る際も、ただ文章を丸写しするのではなく、ピラミッドストラクチャーを意識して思考を整理しながら記録していきます。

デザイン思考入門

古今を繋ぐひらめき学習

日常で使う発想法は? ブレンストーミングやKJ法は、ほぼ無意識のうちに日常で活用していると感じます。一方で、SCAMPER法は6つの展開視点を覚えるのが難しく、特定のワークに取り入れると効果的だと思いました。特に、6つの展開事例を直感的に理解できると、より実践的な方法が見つかりそうです。 江戸時代の知恵はどう活かす? また、SCAMPER法を考える中で、江戸時代に使用されていた「網袋」を思い出しました。網状の紐で持ち運び用に工夫された手法は、現代ではバックパック以外の荷物整理のアイデアとして参考になるのではないかと考えます。さらに、KJ法によるアイデアの分類やダブルダイヤモンドを用いた発想展開では、「抽象と具体」を意識して階層化することで、アイデア間のつながりが見えやすくなると感じています。具体的なアイデアが数多くあっても、その積み重ねが抽象度の高いテーマを生み出し、いわゆるコンセプトピラミッドを形成するのが重要だと思います。

データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

クリティカルシンキング入門

ピラミッドで磨く伝わる言葉

文章の伝え方はどんな工夫? 普段から、読み手に伝わる文章を意識して資料作成や報告書、メールを書いていたつもりでしたが、改めて文章表現の難しさを感じました。今回学んだ「ピラミッドストラクチャー」の手法は、情報を伝える側だけでなく、受け取る側としても意識すべきだと学びました。 学びはどこで生かせる? 自分が作る提案資料や報告書、メールだけでなく、会話においても今回の学びが役立つと感じています。また、他者が作成した提案資料をチェックしたり、報告を受ける立場であっても、この考え方を意識することで、より効果的に情報を整理できると思います。 推敲の課題は何か? これまで振り返ると、文章を推敲するあまり、一文がだらだらと長くなったり、不要な補足が追加されることがあり、必要な情報が簡潔にまとまっていなかったとは反省しています。今後は、ピラミッドストラクチャーを意識し、相手に伝えたいことをより簡潔にまとめるよう心がけたいと考えています。

データ・アナリティクス入門

市場のヒントがここに!実践分析術

何で3C分析が有効? 今回の授業を通じて、市場や企業、競合の現状把握に役立つ3C分析の有用性を改めて実感しました。顧客のニーズや市場の動向、さらに自社の強み・弱みを整理する過程は、企業戦略を考える上で非常に参考になりました。 どう活かす4P分析? また、4P分析の学習を通して、製品の特性、価格設定、流通戦略、プロモーションの各要素がどのように組み合わさってマーケティング戦略が形成されるか、具体的に理解することができました。各事例をもとに、直接実務に活かせる観点で考察を進める姿勢は、今後の業務改善や新たな戦略立案に大いに役立つと感じました。 なぜ視野を広く? さらに、分析手法を検討する際には必ずしも自社内のルールに固執せず、他社のプロセスや市場全体の流れを含めた幅広い視点で情報収集を行うことの重要性も再認識しました。今後も今回の学びを実際の問題解決に積極的に応用し、より実践的な戦略構築に努めていきたいと思います。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right