データ・アナリティクス入門

数字でひも解く学びの裏側

平均値だけで大丈夫? 平均値だけでは現状を正確に把握できないという点に気づきました。B校の平均年齢が30歳であると、一見「大人中心のスクール」と捉えられがちですが、実際のヒストグラムを見ると低年齢層と高年齢層に分かれており、19~40代が希薄な“空洞”となっていることが明らかです。分布のばらつきを示す指標やデータの可視化の重要性を再認識する結果となりました。 利益ギャップは何? また、利益ギャップの分析では「売上=生徒数×単価」や「費用=講師人件費+販管費」など、各要素をツリー状に分解して寄与度を評価すると、生徒数の減少が最も大きな影響を持つことが分かりました。数字を軸に構造、原因、施策へと論理的に掘り下げるプロセスは、限られた時間の中で根本原因を見出す上で再現性が高く、非常に有用だと感じました。 スクールの違いは? さらに、A校とB校の年齢分布を比較することで、それぞれのスクールの課題と強みが浮かび上がりました。具体的には、A校は働き盛り世代が多い一方、B校は子供やシニア層が中心となっており、主要な顧客層が逆転していることが一目で分かりました。このように、セグメント別に指標を比較することで、各拠点固有の課題や有効な施策が明確になると実感しました。 仮説検証は正確? また、仮説を立てた上で講座の時間帯やキャンペーン履歴、交通網のデータなどを用いて検証を行う、仮説思考とデータ検証の往復が大変重要であると学びました。これにより、先入観に捉われず具体的な打ち手を見いだすことが可能になります。 ヒストグラムで理解? ヒストグラムという可視化ツールについても大きな学びがありました。年齢のような連続変数を度数分布として表示することで、山の位置や高さ、外れ値の存在、平均や中央値とのズレなどを直感的に理解しやすくなり、チーム内の共有や迅速な意思決定につながることを実感しました。 今後の視点は? これらの学びを踏まえ、今後は「平均ではなく分布を見る」「結果から逆算して要因を分解する」という視点を意識し、セグメント別の比較や仮説と検証のサイクルを高速で回すことで、的確な改善策を提案していきたいと考えています。 データ分析は万全? この手法はマーケティングデータの作成や報告のほぼすべての場面で再現性高く応用できると実感しました。例えば、月次KPIレポートではサイト訪問者の平均滞在時間だけでなくヒストグラムを活用し、離脱が集中する滞在秒数帯を明らかにします。また、指標をチャネル別やデバイス別に分解することで、最も寄与度の高いセグメントを特定することも可能です。 キャンペーン対策は? 新規顧客獲得キャンペーンでは、過去の結果を年齢と購買頻度の度数分布で可視化し、コンバージョンが低い空洞セグメントに対して仮説―例えばクリエイティブの不一致や配信時間帯の不適合など―を立て、次回のテスト設計へつなげるアプローチを検討します。 リード改善の鍵は? また、リードスコアリングモデルの改善においては、成約率を平均値だけで評価するのではなく、四半位範囲や標準偏差を活用してばらつきの大きい属性を抽出し、スコアリングの重み付けや閾値を再設定することでモデルの精度向上を図ります。 CX調査で何が? CX調査の報告書においても、NPSの平均値のみならずプロモーター・パッシブ・デトラクターの比率をヒストグラムで示すことで、具体的な要因を定量的に明示し、より効果的な施策提案への流れを作ることができます。 ROI分析の焦点は? さらに、広報や広告などのクロスチャネルROI分析でも、チャネル別平均CPAだけでなく、キャンペーンIDや日次CPAをヒートマップでまとめる手法により、特に偏差の大きい日やクリエイティブを特定し、原因の仮説検証を進めることで、改善アクションの精度を高めることができると考えています。 経営判断のサポートは? 最後に、経営層向けのダッシュボード設計においては、平均売上や総リーチといった数値だけでなく、パレート図や箱ひげ図を取り入れることで、主要顧客層の状況や外れ値の影響を直感的に共有し、部門横断の意思決定を加速させる仕組みを実装したいと考えています。 行動計画は具体的? 具体的な行動計画としては、まず今週中に主要KPIレポートの雛形を改訂し、ヒストグラムや箱ひげ図、パレート図を自動生成するツールを作成します。続いて、来週には主要指標を要素分解ツリーで可視化したダッシュボードを試作し、経営層へのレビューを実施する予定です。その後、2週間以内に過去のキャンペーン実績をもとに年齢や購買頻度でビン分けし、空洞セグメントの抽出ロジックを構築します。 改善プロセスの定着は? 今月末には空洞セグメント向けのテスト設計を完了させ、翌月にはリードスコアリングモデルの再学習と改善を実施する計画です。また、四半期ごとに寄与度分析レポートを自動生成し、改善施策の立案を行い、継続的に学習と検証を社内に蓄積することで、「平均値→分布」「結果→要因分解」という共通プロセスを定着させていきたいと考えています。

デザイン思考入門

共感を導く情報設計の力

提言の進め方は? 普段は、自部門における業務改善提言をまとめる際、現状分析から課題の洗い出し、解決策の検討、そしてプロトタイプ作成にあたる「改善施策案」の作成まで、一連のステップを踏んでいます。その後、実際の現場にパイロット運用してもらい、評価結果を反映させたうえで全社展開するという流れで進めています。しかし、これらは経験則に基づいて実施しているため、精度については疑問を抱くことも多く、「本当にこれで良いのか」「もっと深く検討すべき点はなかったか」「チームにしっかり伝わっているか」といった不安がつきまといます。 情報設計はどう活かす? 今回学んだ「情報設計」では、ユーザーストーリーマップやカスタマージャーニーマップを用いて、一連の行動を可視化する手法が印象に残りました。仮説に基づいてコンテンツを洗い出し、ワイヤーフレームとして可視化することで、「誰に・何を・どのように」という視点を意識しながら情報の構成を検討する重要性を実感しました。また、モックアップ作成時にもアクセシビリティやユーザビリティを意識しつつ、現場の実情に合わせた設計が求められると感じました。 モックアップは要注意? 私の場合、業務改善提言に基づく施策案をプロトタイプとして捉えると、どうしても現場では具体的な作業方法や運用フローが前面に出やすくなり、結果としてモックアップになってしまうことが多いです。確かに、モックアップは現場の方々にとって分かりやすく、何をすべきかを直感的に提示できます。しかし、それが本当に効果的な施策であるかどうかは、ワイヤーフレームで情報の骨組みをしっかり設計し、基盤となるユーザーストーリーを正確に捉えることが必要だと改めて感じました。こうした視点を深く分析し、可視化することで、チーム内で課題を共有し、伝えることができると感じています。 共感で見える課題? また、プロジェクトの初期段階においては「共感」が非常に重要であると実感しました。先週、現場のエンジニアから「資料に説明が見当たらず、作業ミスが発生してしまう」との意見が出た際、彼らの状況や日々の業務背景を考えると、確かに説明不足は理解しやすい問題だと共感しました。一方で、別のメンバーが資料の他の部分で情報が補完されていると指摘するなど、一見対立する意見もあり、現場で働く人々の視点や状況に寄り添わなければ本質的な課題を把握し、改善策を導き出すことは難しいと痛感しました。 アイデアは整理できた? 今回のプロトタイピングでは、具体的なアイデア検討と自身の業務との関連付けを行いながら、意識すべきポイントを学ぶことができました。前回学んだ「言語化する」という手法と今回の「可視化する」という手法は、どちらも抽象的ながらも常に意識すべき要素だと感じています。情報設計、コンテンツ設計、そしてUI設計という一連の流れを通じて、体系的な実践方法を整理できたことは大きな収穫です。特に、ユーザーストーリーマップやカスタマージャーニーマップを用いてユーザーストーリーを正確に捉える点については、これまで疎かにしていた部分を改め、しっかりと実践していく必要があると強く意識しました。 目的を見失って? 一方で、どうしてもモックアップ作成に偏ってしまいがちな点、つまり自部署や自分の目的を優先してしまう傾向があることにも改めて気づかされました。あるメンバーが自作の資料に固執し、必要な対策が偏る事例を目の当たりにした経験から、業務改善その本来の目的である「ユーザーの目的」を見失わないためにも、情報設計を通じた体系的なアプローチの重要性を痛感しています。今後は、この学びをチームメンバーと共有し、偏った施策にならないように取り組んでいきたいと思います。

戦略思考入門

学びで切り拓く実践経済論

ビジネスの現状は見えてきた? ビジネスを理解するためには、従来の事例や定石に頼るだけでなく、自社の業界や時代の変化、競合状況を踏まえ、本当にその手法が有効かどうかを冷静かつ客観的に考える必要があります。 規模の経済性は何? まず、「規模の経済性」についてですが、生産数量の増加により製品1つあたりのコストが低減される現象です。固定費の吸収や大量仕入れによる変動費の低減が挙げられますが、固定費の種類によってはこの効果が働かない場合もあると理解しました。 習熟効果の影響は? 次に「習熟効果」ですが、累積生産量や作業量が増えるにつれて単位当たりのコストが低下するという効果です。たとえば製造業では作業のノウハウが、サービス業では仕事に慣れることがこの効果に当たります。しかし、技術革新によって作業が自動化されたり、新たな技術が導入されると、従来の習熟効果が薄れる場合もあります。一方で、代替されにくい分野では、習熟効果を重ねることで競争優位を保てる可能性があります。 範囲の経済性ってどう? また、「範囲の経済性」は、既に保有している資源や無形資産(知識や経験)を他の事業でも活用することでシナジー効果を生み、コスト削減につなげる手法です。たとえば、ある事業で培った経験やノウハウを別の分野で活かすことで、それぞれの事業が互いに後押しされる効果が期待できます。 ネットワークの経済性は? さらに、「ネットワークの経済性」については、参加者が増えることでその参加者自体にとっての利便性が向上し、結果として経済効果が高まる現象です。市場に早期参入し先行者利益を確保することで、そのサービスが事実上の標準となり高い利益に結びつくことが理解できました。 各メカニズムの注意点は? 業界や商品、サービスによっては、これらのメカニズムが通用しなかったり、逆に作用する場合もあります。そのため、自社の事業特性をよく理解し、状況に応じた手法の選択が重要です。 原価高削減の工夫は? 昨今の原価高騰を背景に、商品開発時のコスト削減を進める際、これらのメカニズムをベースにした手法の検討は有効と言えます。特に製造業では「範囲の経済性」や「習熟効果」がよく認識されています。例えば、ある事業で培ったブランド力や設備を別の事業に活かしたり、各事業で得た成功事例や人脈の共有によりシナジーを創出することが、自社ならではの強みにつながると感じました。 AI進化の影響はどう? また、近年のAIの進化により、さまざまな業界や業務が代替される中で、従来の習熟効果が薄れるリスクがある一方、逆にイノベーションによって代替されにくい分野で中長期的に習熟効果を高めることがチャンスでもあると捉えています。具体的には、人材のスキル向上や外部との人脈形成、さらにはブランド価値そのものの強化が挙げられます。 部署での取り組みは? 自分は所属する部署の立場を活かし、以下の取り組みを実践していきたいと考えています。まず、各事業での成功事例を分析し、その要因をノウハウとして蓄積・共有することで「範囲の経済性」を推進します。次に、各事業や部署間での人脈の共有を進め、協業を促進する環境づくりに努めます。最後に、担当する分野のスキルや知識の研修を強化し、人材の習熟効果を高めることで、競争優位の確立を目指していきます。

データ・アナリティクス入門

実践で磨く論理・情熱の知恵

目的と仮説は何? データ分析の本質は、目的を達成するための仮説検証の手段であり、その核心は「比較」にあります。目的や仮説を明確に意識し、サンプルの選定や条件の統一に努めることが重要です。仮説とは、生成と修正のループを経る動的なプロセスの構成要素であると考えられます。 バイアスとは何? 比較の観点では、「Apple To Apple」という考え方が、局所管理の重要性を示しています。爆撃機の弾痕のエピソードは「生存者バイアス」の教訓を教えてくれますが、選択バイアス、観察バイアス、確認バイアス、報告バイアス、時間軸バイアス、因果関係の誤認、欠測バイアスなど、さまざまなバイアスの存在に留意する必要があります。実験であれば局所管理、ランダム化、反復といった対策が有効ですが、既存データの分析では多角的な視点から批判的に観察する姿勢が求められます。 論情倫理の均衡は? 私自身は、統計学やケモメトリクスを専門としていたため、論理・データに偏重したアプローチを取ってきました。しかし、近年の経験から、情理や倫理とのバランスが必要であると痛感しています。論理・情理・倫理の三要素のバランスが、良い意思決定を行うためには欠かせません。本講座を通じ、特に現在検討中の人事制度改訂において、データ分析のアプローチを取り入れることで、より客観的な意思決定を実現したいと考えています。もちろん、データはあくまで一要素であり、他の要素とのバランスを崩さないようにしたいと思います。 分析方法はどう違う? 分析の際には、目的遂行のための仮説生成・修正のループを意識し、その駆動力として論理(データ)、情理(共感性)、倫理の三要素を念頭に置くことが大切です。また、論理(データ)の解釈に際しては、「比較である」という原則を守ると共に、生存者バイアスをはじめとした各種バイアスを極小化する意識が求められます。実験的な方策では局所管理、ランダム化、反復の原則が一定の効果を発揮しますが、既存のデータを対象とする場合はさらに多角的な検証が必要となります。 TAPEは何? その実践的なアプローチとして、「TAPE」フレームワークの導入が考えられます。これは、次の観点からデータを捉えるものです。まず、Target population(対象母集団)として、データが本当に分析対象の母集団を代表しているか確認します。次に、Assembly of data(データの集め方)では、どのような条件や手順でデータが収集されたのかを問います。さらに、Predictor/outcome(予測変数と結果変数)が明確に定義され、測定に問題がないかを検証します。そして、Extraneous variables(交絡因子)については、関連しそうな他の要因が適切に制御・補正されているかを考えます。 問いは何? より具体的には、以下の問いを活用します。 ① このデータは誰の、どのような状況を反映しているのか? ② このデータはどのような手法で得られたのか? ③ 仮説として考える因果関係や相関は、他の要因に左右されていないか? 結論はどうなる? 以上のような多角的な視点を持つことで、より精度の高いデータ分析が実現でき、バランスの取れた意思決定に繋がると考えています。

マーケティング入門

誰に何を伝える?実践マーケ術

研修の成果は何? マーケティングの本質である「誰に、何を、どのように売るか」を改めて理解できた研修でした。 お客様視点の改善は? ① 既存製品の開発・改善については、競合製品やサービスに偏りがちな視点ではなく、実際に購入・利用するお客様の立場に立った取り組みが大切であると再認識しました。お客様から利用状況を直接ヒアリングしたり、実際の利用シーンを仮説で描くことも必要だと感じました。同時に、自社製品・サービスと競合との違いや差別化できるポイントをより深く掘り下げる重要性も学びました。 新製品開発で何を知る? ② 新製品の開発では、市場調査の実施が不可欠であるとともに、アンケートなどで得られるデータが必ずしも完全なものではないという現実も理解できました。プロダクトアウトに走るのではなく、お客様の抱える課題(ペインポイント)を解消するために、マーケットインの視点で製品やサービスを企画する姿勢が求められます。また、他社との差別化においては、お客様にとって真に価値のある要素や、期待を超える満足を提供できるポイントを見出す意識が必要です。 値決めの危機感は? ③ 価格設定については、かつてある著名な経営者が語った「値決めは経営」という言葉を思い出し、肝に銘じたいと感じました。お客様に受け入れてもらうために安易に低価格を設定すると、売上や利益だけでなく自社の製品・サービスの価値自体を下げかねないと危機感を覚えました。お客様の期待を超える提供内容を追求し、対価を適正に得られる仕組みを常に問い続ける必要があると実感しました。 販売手法はどう見る? ④ 販売チャネルに関しては、B2C、B2Bともに多様化している現状を踏まえ、採用するチャネルひとつで売上が大きく左右される点を再確認しました。単にホームページでの製品紹介に留まらず、お客様が具体的なアクションへと移れるような工夫が必要であり、これまでの対応を振り返る機会となりました。 宣伝効果はどのように? ⑤ プロモーションについては、法人向け営業が主体であったため、これまであまり意識してこなかった視点を見直す良い機会となりました。サービス紹介資料や提案書が本当にお客様に響いているのか、「だから何?」「効果は何か」を意識して再検討したいと考えました。これまで使用していた会社紹介、サービス紹介資料、提案書、ホームページの内容をお客様目線で見直し、営業メンバーが自律的に改善に取り組めるよう、具体的なストーリー性を持たせた働きかけを行いたいと思います。 経営報告はどう伝える? また、経営企画担当として財務状況などの報告を行う際も、形式的な資料ではなく、その時々の問題や課題に焦点を当てた内容にする必要性を感じました。毎回「だから何?」「誰に、何を、どのように伝えるのか」を意識し、報告資料を作成していくことを心掛けるとともに、この視点を「誰に、何を、どのように売るか」というマーケティングにも活かしていきたいと思います。 戦略計画に今後は? 最後に、プロモーション活動については、街中のさまざまな施策を意識的に観察し、その意図を汲み取ることで、売れる仕組みづくりに具体的に反映できるよう今後の戦略計画に取り入れていく所存です。

マーケティング入門

自己紹介で終わらない伝え方の挑戦

自己紹介はどう伝える? 最初に参加したグループディスカッションでは、自分の魅力を他者に伝えることが課題でした。しかし、結果的にいつもの自己紹介に終始してしまい、商品の魅力を他者に分かりやすく伝えることの難しさを改めて感じました。 商品評価の視点は? 「ヒット商品」に関するグループディスカッションでは私は「売れた商品」をヒット商品と捉えていましたが、他の方々は「ロングセラー商品」として捉えていました。同じ言葉でも人によって異なる視点があることが興味深いと感じました。次に、全体のディスカッションでは駅で販売されているチーズケーキについての話がありました。この商品にはまだ出会ったことがありませんでしたが、「嗅覚に訴えかける」という印象深い表現が使われていることに感銘を受けました。これは、五感を通じて顧客に響く素晴らしいプロモーションです。 感性に響く事例は? ディスカッションでは深くは掘り下げられませんでしたが、五感に響くマーケティングは「感性マーケティング」と呼ばれるようです。これについて、自分が影響を受けている事例を考えてみました。視覚ではペットショップで見る子犬や子猫に心惹かれます。聴覚では特定のブランドのテーマソングが頭に残ります。味覚では先日の北海道物産展で試食して購入したことがあります。触覚では、ペットショップでの触れ合いを通じて、欲しくなることがあります。嗅覚では、パンやコーヒーの香りに引き寄せられることがあります。 利益重視で大丈夫? 動画学習での「顧客志向」では、顧客のニーズを正しく捉え、顧客満足を基にした利益を得ることが基本理念とされています。しかし、自社の利益追求に走り、結果的に目的から外れてしまうことも経験したことがあります。全体を俯瞰する視点を一層強化する必要性を実感しました。 伝え方はどうする? 日常のコミュニケーションにおいても「わかりやすく伝える」ことは重要です。同じ表現でも人により捉え方が異なることを踏まえ、多様な視点からわかりやすい伝え方を心がけたいです。 情報収集どう進める? 「顧客志向」を持つ上では、顧客ニーズをヒアリングし、情報を集約してきました。これを効率的かつ正確に行うため、情報収集力と分析力を磨く必要があると感じました。また、商品への理解と販売促進のための手法を学び、それを活用する場面が豊富にあると考えています。 需要分析は十分? 「わかりやすく伝える」ためには、まず自分が商品や物事を正しく理解することが大切です。その上で、客観的な分析を通じ、需要や不足部分、代替手段を検討できるように努めていきます。 顧客の声は聞いた? 顧客とのコミュニケーションでは、顧客ニーズを効率的に引き出す手法があれば、それを習得したいです。さらに、良い提案や解決策を提示し、商品についての理解度を高め、わかりやすく説明できるよう心がけます。例えば、商品を知らない友人に説明し、理解度を確認してもらうことも有効だと思います。購入を促す仕組みづくりについては、より具体的な知識を身につけたいです。 将来の学びは? これから習得すべき点は動画学習や、受講者皆さんのケーススタディなどを通じて学べることを期待しています。

マーケティング入門

ニーズを深掘り!新たな発見と実践方法

何を売ることが本質? 今回の学びのテーマは『何を売るか』で、顧客のニーズを深掘りし、真のニーズを捉えることの重要性を理解できました。特に印象に残ったのは、ニーズを探り出す方法です。以前から「ニーズやインサイトを捉えることが大事だ」と聞いていましたが、具体的にどう行動すべきか曖昧でした。しかし、今回の学びで、行動観察やデプスインタビューという有効な手法を知り、実践したいと思いました。 どう観察して掘る? 具体的には、行動観察では街に出かけ、一定時間人々の行動を観察することで潜在的なニーズを見つける手法です。また、デプスインタビューは顧客の真の意図や感情を引き出すための深掘りしたインタビュー方法です。このような手法を活用し、日常的に身近な商品や自社商品を見つめ直し、その裏にある真のニーズを考えることの重要性を学びました。 消費者の視点は? また、「常に消費者目線で不便に対してのアンテナを張る」という言葉が心に残りました。消費者の視点を持つことで、顧客のニーズを的確に捉え、商品開発やマーケティングに役立てられると感じました。明日から早速マーケティングリサーチを実施し、真のニーズを探り出すことを実践したいと思います。 ニーズの核は何? 顧客ニーズの深掘りに関して、マーケティングや企画において顧客のニーズを正確に捉えることは重要です。今回学んだ方法は、ターゲット顧客をより深く理解するために役立つと感じました。新商品の開発やリニューアルを検討する際には、行動観察やデプスインタビューを活用し、潜在的なニーズを掘り下げられると考えています。これにより、顧客が本当に求めるものを的確に反映した商品開発が可能となるでしょう。 どう伝えるべき? プロモーション戦略の策定においても、顧客の真のニーズを把握することは重要です。学んだことを活かし、商品の機能や特徴を伝えるだけでなく、顧客の欲求や悩みに応じたメッセージを発信したいと思います。消費者が感じる不便さや課題に訴えかける広告コピーやキャンペーン設計に取り組み、より共感を得やすいプロモーションができると考えています。 企画に感情を加える? さらに、商品企画やネーミングにおいては、顧客のニーズを深く理解することで、商品にストーリー性や感情的価値を付加できると考えています。顧客の記憶に残りやすく、購買意欲を高める企画を立案できるでしょう。 市場の声はどう? 市場調査においても、行動観察や消費者インタビューはすぐに役立つと感じました。新商品の導入前後の市場調査や、既存商品の改良を検討する際には、顧客の行動を観察し、リアルなフィードバックや新たなインサイトを得ることが可能です。顧客の意見を深く掘り下げて、商品やサービスの改善点を具体的に把握し、より的確な戦略を立てられるようになりたいです。 どう習慣するの? これらの学びを活かし、日常的にコンビニやスーパーに行った際に商品をただ眺めるのではなく、その商品の背後にある顧客の真のニーズを考えるトレーニングを習慣化していきます。自社商品についても同様に分析し、顧客のニーズを再確認する時間を設け、より顧客志向のマーケティングや商品企画に取り組みたいと考えています。

戦略思考入門

差別化戦略で優位性を築く方法を学ぶ

「差別化」って何? 「差別化」とは何か、そしてそのポイントについて、体系的に学び理解することができました。 差別化の条件は? 差別化とは、戦略の手法として、自社、競合、市場(顧客)を正確に把握し、分析した上で「目的」や「目標」に向けて自社が顧客ニーズを勝ち取り、優位性を保つことを指します。この際、「実現可能性」のある手法であること、「持続的な内容」であること、そして「模倣難易度」が高いことが求められます。 基本戦略はどう? 基本戦略を決めるには、ポーターの3つの基本戦略を踏まえた経営環境分析が重要です。それにより、自社が取るべき戦略の方向性を確認し、また競合の戦略も確認します。具体的には、コスト・リーダーシップ戦略、差別化戦略、集中戦略(ニッチ戦略)の3つです。これらを同時に達成することができれば、圧倒的な優位性を築けます。ただし、現実は複雑であり、何を見極めるべきかが見えにくくなることも多々あります。したがって、学びと実践を通じて、その視点を磨きたいと感じています。 顧客視点はどう? 差別化を行うには、まず「顧客」を明確にし「顧客の視点」から考えることが重要です。しかし、経営環境を正確に把握・分析しないと、ターゲットを間違え、結果として戦略も誤る可能性があります。今回の受講では、さまざまなフレームワークを活用しました。また、施策には「実現可能性」、「持続的な差別化」、「模倣の難易度」といった要素が求められ、例えばVRIOを用いて確認することが有効です。 実践の工夫は? 差別化の実践に向けたポイントとしては、ありきたりのアイディアに飛びつかないことが挙げられます。他にも、しつこく考えることや、他業界の差別化を学ぶこと、多人数で議論を行いアイディアの幅を広げること、自社の強みを意識し必要に応じて外部の力も借りることが重要です。 実務の見直しは? 普段の実務を振り返ると、差別化に向けてまだ取り組める余地があると感じます。特にありきたりなアイディアに依存せず、議論を深めることで実践が初めて意味を成すと実感しています。 営業戦略はどう? 差別化は営業部門での店舗運営や営業戦略を策定する際に活用できるイメージが湧きました。現状は間接部署に勤務していますが、過去の経験を活かし、店舗運営や営業戦略での利用が可能だと考えています。 経営戦略の確認は? また、自社や自部署の経営戦略を確認・理解する際にも差別化の手法が役立つと感じました。過去から現在、そして未来にかけての戦略を論理的に理解することで、自部署の方向性や次の一手を考える基盤を築けると思います。現状は営業部門ではありませんが、この部分での活用に向けた行動を進めています。 強みを活かすには? 自部署の強みを活かした差別化を検討するために、VRIOでの分析を行い、営業にとって差別化につながる提案を行っていきたいと考えています。そして、自部署の存在や発展が全社の差別化に繋がることを論理的に説明できるように努めていきます。

デザイン思考入門

デザイン思考でCX・EXを劇的向上

デザイン思考の学びとは? 今回の授業を通じて、デザイン思考のステップを学ぶことができ、ワークを通じてその理解を実践的に深めることができました。特に印象的だったのは、「自分の気分を色で表現する」というアプローチです。この手法は非常に斬新であり、言葉では伝えづらい感情や思考を視覚的に捉えられる点が非常に興味深かったです。 CXやEX向上への活用法とは? デザイン思考の考え方は、普段の業務で扱う顧客体験(CX)や従業員体験(EX)の向上に直接活用できると感じました。例えば、ホテル業界のクライアントが抱える「オンライン上の旅行代理店の評価向上」や「レビュー分析の効率化」といった課題には、ただアンケート結果を分析するだけでなく、実際の宿泊客がどのような体験をしているのかをきちんと理解する必要があります。デザイン思考を応用し、宿泊客のペルソナを作成し、彼らの視点から課題を捉えることが重要です。これには、既存のフィードバックに加え、インタビューや観察を通じた定性的な情報を収集し、体験の課題を明確に定義して創造的なソリューションを検討するアプローチが有効です。これにより、より本質的な改善策を提案できる可能性があると考えています。 ペルソナ作成の重要性とは? デザイン思考のフレームに沿ったソリューション提案を試みたいと思います。まず、顧客のペルソナを作成する段階では、クライアントの現状を整理し、ターゲットとなる顧客層である宿泊客や従業員の特徴を明確にします。そして、過去のアンケートデータやレビューを分析し、代表的なペルソナを作成します。このペルソナをクライアントと共有し、実態とのズレがないか確認します。 定性的情報の収集方法は? 次に、定性的な情報を収集する段階では、クライアントに宿泊客や従業員へのインタビューを提案し、必要ならホテル現場を見学して宿泊客の行動やスタッフの対応を観察します。また、オンラインの口コミやレビューを詳しく調べ、テキスト分析を使ってパターンを把握します。 課題の定義と可視化の仕方は? 顧客体験の課題を明確に定義する段階では、収集した定量データと定性データをもとに、顧客の不満や期待値とのギャップを整理します。課題を「宿泊前」「滞在中」「宿泊後」に分けて可視化し、クライアントと共有します。そして、影響度と実現可能性を基に、クライアントが優先して取り組むべき課題を整理します。 創造的な改善策の検討方法は? 最後に、創造的なソリューションを検討する段階では、他業界の成功事例やデザイン思考のフレームワークを活用し、新しい施策を考案します。クライアントとワークショップを実施し、改善策を一緒にブレインストーミングし、小規模なテスト運用を提案して、データをもとに改善を重ねるアプローチを取ります。 これらのプロセスを通じて、デザイン思考の視点を活かしてクライアントにとってより価値のあるソリューションを提供できるようになりたいと考えています。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

分解の先に迫る成功のヒント

売上分解のポイントは? ライブ授業で、伝統工芸品の売上低下の原因を分析するワークに参加しました。その際、思いついた要因に飛びついてしまうと誤った結論に至ることを身をもって実感しました。事例を読むと、さまざまな要因が一気に頭に浮かびますが、まずは「売上」をどのように分解し、各要素で問題を明確にすることが大切です。具体的には、問題の本質をWhatの視点で整理し、Whereで該当箇所を特定し、Whyで原因を分析、Howで解決策を立案するというステップを忠実に踏む必要性を感じました。 原因検討の視点は? また、原因を検討する際には、マクロとミクロ両面からの視点が求められることにも気づきました。普段から外部要因にも興味を持ちつつ、自社の業務や販売プロセスを細かく分解して分析することで、フレームワークの精度を向上させる努力が必要だと実感しました。さらに、実数と率の両方を確認するという基本的なポイントが、自身の分析手法において抜け落ちていたことにも気づかされました。 店舗運営の見直しは? 店舗業務においても同様に、業務を分解しボトルネックを解消する手法を取り入れたいと思います。現在の店舗業務は煩雑で無駄が多いと感じていましたが、ある店舗では人員を削減した結果、業務効率が向上し生産性が上がったという事例を経験しました。この経験から、最適な人員配置を再考し、労働分配率を指標として理想的な店舗運営を模索する必要性を認識しました。 工程分析の進め方は? そのためには、まず店舗の業務内容を細かく分解し、どの工程にボトルネックがあるかを洗い出します。具体的には、各作業にかかる時間や担当人数を数値化し、店舗間で比較を行います。比較指標は、優先順位をつけた上で、フレームワークを活用して要因の検証を行います。検証結果から仮説を立て、それを元に対策を立案することが最大の目的です。対策は、すぐに実行できるものと、長期的に計画的に実施すべきものとに分けて検討します。 環境変化への対応は? 法改正や業界環境の変化といった外部要因に柔軟に対応しつつ、業務効率向上に努めることは簡単ではありません。しかし、業務を数値化し経年変化を追うことで、後からさまざまな要因との関連性を振り返り、分析できると考えています。 実行計画の具体策は? 具体的なアクションプランは以下の通りです。   What:労働分配率が高いという問題を認識する。 ① 業務の洗い出しを今期中に行う(Where)。 ② 問題と考えられる業務を数値化する(今期中に実施)。 ③ 比較指標を立て、要因の検証を行う(今期中)。 ④ 店舗間の比較を来期上期に開始する。 ⑤ 結果を集計し、仮説を立てる作業を来期上期に実施する。 ⑥ 対策を立案するのを来期下期に進める(How)。 以上の手順を踏みながら、各ステップを着実に実行していくことが、問題解決への鍵となると感じています。

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

「検討 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right