データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

クリティカルシンキング入門

常に問い、磨く思考力

どうして姿勢が必要? クリティカルシンキングの3つの姿勢を基本に、業務課題の解決に取り組む大切さを学びました。具体的には、①常に目的意識を持つ、②自分の思考の癖を前提として考える、③どんなに考えがまとまっても問い続ける、という姿勢を今後意識して業務に臨もうと思います。また、事業戦略の立案や施策実行の際に、より良い方法がないかと問い直すことで、業務の質を高めたいと考えています。 戦略成功の秘訣は? 事業戦略の成功率を向上させるため、今回の講座で学んだ思考力の鍛え方や、他者に納得感を伝える説明力の重要性を実感しました。この学びを日々の業務に取り入れ、特に戦略立案や関係者の協力・合意を得る場面で積極的に活用していく所存です。 本当に良い判断は? 本日の業務からは、改めてクリティカルシンキングの3つの姿勢を意識し、自分の考えに対して「本当にそれでよいのか」という視点を加えることで、課題解決の精度をさらに高めていきたいと思います。週末までに関連動画も視聴し、必要な知識とスキルの習得に努める計画です。

アカウンティング入門

アカウンティングで未来を読む力を培う

利益理解で何が見える? アカウンティングを学ぶことは、会社の成績表を正しく読む力を養うことだと理解しました。ビジネスは基本的に利益が出ているかが重要です。その利益がどのように構成されているのかを知ることで、自社のビジネス構造を理解することができ、非常に重要だと感じました。 数字から戦略は? 私は、自部門のサポートメンテナンス費用による収入、人件費、そして利益率を正確に把握するために、この知識を活用したいと思っています。また、解釈した数字を基に、人材採用戦略の策定に役立てたいと考えています。さらに、日本のみならず、海外のサポート部門とのベンチマークを行い、課題となり得る部分の把握とその対策についても検討したいと考えています。 数字をどう解析する? もし、サポート内のファイナンス担当から実際の数字を入手できるのであれば、それを自分で解析してみたいと思います。また、会社の四半期ごとの決算書も同様に自分で解析し、会社の状態を推測しながら、今後の判断材料として活用したいと考えています。

データ・アナリティクス入門

データ分析の新しい視点を得る旅

データ分析の初め方とは? データ分析を開始する際、何も考えずに「とりあえず」データを引っ張ってくることが多いと感じていました。しかし、何を知りたくて、何の目的で分析を行うのかを明確にすることの重要性を改めて認識しました。特に、課題がある場合、その課題の根本を探るためには、MECEを意識して質の良い仮説を立てることが大切だと気付きました。 チームの課題をどう把握する? 毎週提出されるデータを見て、課題がどこにあるのか、そしてその課題に対する現在の立場やGAPを見つけるようにしています。まず、チームとしての課題や目標を確認することが重要です。これが明確になって初めて、どのデータを用い、どのように分析(比較)するのが適切であるかが理解できる気がします。 他社のフレームをどう活用する? 現在、特に明確な課題や問題があるわけではないので、よりよくするために現状と目標を比較しようと考えています。その際には、自社だけでなく、他社や市場で行われている同様の分析フレームを参照することも役立つでしょう。

デザイン思考入門

現場で生まれた共感の提案力

現場で何が分かった? IT業界でリサーチに基づくソリューション提案を行う中、デザインシンキングの実践が顧客の真のニーズに沿った提案を可能にすると実感しました。まず、顧客の現場に足を運び、業務を観察して共感を得ることから始め、データに基づいて本質的な課題を特定しました。その後、社内外の関係者を交えたワークショップを通じて多様なアイデアを創出し、モックアップやデモ環境を用いて解決策を可視化した上で、実際のユーザーテストとフィードバックを重ねることで改善を図りました。この一連のプロセスにより、製品機能の提案から脱却し、顧客の真のニーズに応じたソリューションを提供できるようになりました。 対話で見えた本質は? また、現場での観察や対話を通じ、顧客が本当に求めるものを深く理解する重要性を再確認しました。従来の単なる機能アピールから一歩進み、顧客と共に課題解決を目指すことで、信頼関係が築かれたと感じています。今後もデザインシンキングを積極的に取り入れ、顧客視点に立った提案を実践していきたいと思います。

データ・アナリティクス入門

新たな指標で描くデータの未来

どうしてデータ加工が必要? これまで、データ分析では単純平均や標準偏差、棒グラフ、散布図など、一般的な方法を用いてきました。しかし、集めたデータを適切に加工しなければ、想定していた答えや正確な結果を得るのは難しいと学びました。今後は、必要に応じて加重平均や中央値などをより効果的に活用していきたいと考えています。 どの指標が本当に有効? また、単純平均や標準偏差だけに頼ると、データの見え方が一面的になりかねません。そのため、加重平均や幾何平均、中央値といった指標を取り入れ、どの指標がデータを最も適切に表しているのかを検証しながら分析を進めたいと思います。これまでとは異なる視点からデータが見えることを期待しています。 なぜ仮説検証が重要? 特に、私の業務は問題解決のための分析とあるべき姿の考察の両面に関わるため、その時々で適切な仮説を立て、データの表し方を工夫することが求められます。状況に応じた分析手法を積極的に取り入れることで、より正確なデータ分析に繋げていきたいと思います。

クリティカルシンキング入門

経営戦略がスッと頭に入る、新しい学び

学びの収穫とは? ナノ単科の講義を受講して、非常に有益な学びを得ることができました。特に、経営戦略の立案方法についての具体的な事例や分析手法が理解しやすく、実務に役立つ内容でした。 講義構成はどうだった? まず、講義の構成が非常に論理的であり、一つ一つのトピックが順序立てて説明されていたため、内容が頭に入りやすかったです。講義で使われる用語も適切で、専門的な内容でありながらもわかりやすく説明されていた点が良かったと感じます。 実践的手法の活用は? また、経営戦略を立案する際に必要となる実践的な手法や、実際のケーススタディを通じて具体的な状況にどう対応すべきかが学べたことが大きな収穫でした。特に、自分の業務に直結する事例が多く取り上げられており、学んだ内容をすぐに応用できる点が魅力的でした。 知識が整理されるとは? このナノ単科講座を通じて、これまで漠然としていた知識が整理され、実務に直結するスキルが身についたと感じています。今後もこのような形で学びを深めていきたいと思います。

データ・アナリティクス入門

ビジネスに即役立つマーケティング理論を学ぶ

新たな視点を得るには? ナノ単科を受講して感じたことを共有します。このコースでは、多くの新しい視点や知識を得ることができました。特に、マーケティングの理論やフレームワークを学び、それを実際のビジネスにどう適用するかを考えることが非常に有益でした。 学びを実務にどう活かす? 最も印象に残ったのは、具体的な事例を用いた学習方法です。このアプローチにより、抽象的な理論が実際のビジネスシーンでどのように機能するのか、より深く理解することができました。例えば、消費者心理の変化や市場の動向について学び、それを自社の戦略にどう取り入れるかという点が非常に実践的でした。 経験談から何を学ぶ? また、講師の方々の経験談や具体的なアドバイスも大変参考になりました。理論だけでなく、実務での成功や失敗から学ぶことで、よりリアルな視点でビジネスを考えることができるようになりました。 ナノ単科を通じて得た知識やスキルは、今後のキャリアにも大いに役立つと感じています。このコースを受講して本当に良かったと思います。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

クリティカルシンキング入門

データ分析の新発見!MECEの秘密

データ分解の新しい視点は? データや物事を分割する際には、一度分解して終わりではありません。別の観点でも分解することで、新たな気づきを得ることができます。MECEの分け方には層別、変数別(因数分解)、プロセス別の三種類が代表的です。まずは大まかに分け、その後に細かく分解することが重要です。 効果的な伝達方法とは? 自分の考えを相手に伝える際には、ピラミッド・ストラクチャーを使って複数の観点で整理することが有効です。このとき、まず層別、変数別(因数分解)、プロセス別で瞬間的に整理できるようにトレーニングすることが重要です。細かい切り口でいきなり分けず、大まかに分けることから始めることが推奨されます。 自主演習でスキル向上を? さらに、ピラミッド・ストラクチャーの自主演習では、一つのパターンだけで終わらず、二つ以上の別解を出すように心がけます。瞬発的に切り口を見つける自主演習として、毎日通勤時に自分にお題を出し、層別、変数別(因数分解)、プロセス別で切り口を出す練習をすると効果的です。

クリティカルシンキング入門

仮説検証で視野を広げる思考法

切り口で見える? 複数のデータから一つの仮説を立てる際、切り口を変えると見え方が異なることがあります。これは、文章や言葉だけでなく、数字を分析する際にも思考が偏ることがあり得ると感じさせられました。今見えている情報に基づいて判断することに疑問を持つきっかけとなったと思います。 分析で何が見える? 事務リスク発生の原因分析においては、数値を扱う際の前処理やカテゴライズの過程で切り口を変えることが有効だと感じました。残業時間の増加や処理目標未達成の原因を分析する際にも、同様の手法で切り口を変えてカテゴライズすることで、見過ごされている問題を発見できる可能性があると思いました。 区切ると何が見える? 原因分析時のカテゴライズでは、単にキリのいい数字で区切るのではなく、仮説を立てた上で細かく区切ることが重要です。また、一度作業を終えたらそれで結論とせず、他に考えられる要素がないか一度立ち止まることも大切です。全体の定義を明確にし、漏れや重複がないように意識して区切ることを心がけるべきです。

リーダーシップ・キャリアビジョン入門

自分を見つめるキャリアの旅

キャリアの現状はどう? キャリアサバイバルというテーマが非常に印象に残りました。今までは、自分のキャリアイメージ(どのように成長していくか)だけを考えており、環境の変化や仕事の変動に対して中長期的な視点が不足していたと感じています。 キャリアの伝え方は? また、キャリアアンカーの理解と、それをメンバーに伝えることで信頼を得るという学びも大きかったです。これからは、自己のキャリアアンカーやキャリアサバイバルについて、客観的に捉える良い機会と考えています。上司、メンバー、家族に話を聞くことで、より多角的な視点を取り入れていきたいと思います。 自己開示はどう始める? さらに、このプロセスを自己開示の一環として、メンバー同士がお互いのキャリアについて考える場として活用していきたいと考えています。 あなたの実践は? 皆さんはどのようにキャリアサバイバルに取り組まれているのか、また、上司やメンバー、その他の人間関係をどのように活用しているのか、ぜひ教えていただきたいです。

「得る」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right