リーダーシップ・キャリアビジョン入門

理論で紐解くやる気の秘密

どんな理論を学んだ? モチベーションとインセンティブの関係について、さまざまな理論を学ぶことができました。マズローの欲求5段階説やX理論・Y理論、動機付け・衛生理論といった基礎的な考え方を通して、考察の切り口が広がったと実感しています。 評価基準はどう変わる? また、モチベーションの高低やインセンティブとして感じる基準は、個々の価値観だけでなく、周囲の状況や環境によっても大きく変化することを再認識しました。常に変動するものとして捉え、その変化をより良いものに導く試みが成長に繋がると考えています。 納得感はどう得る? 新しい業務の指示に対して納得感を持って取り組めない場合もあるため、そうしたメンバーのモチベーションやインセンティブについて理解を深めることが大切だと感じました。まずは相手の考えに寄り添い、その視点を理解しようとする姿勢が、納得感の醸成に寄与すると思います。 視点の変化は何? 現時点で分かっているメンバーであっても、今回学んだフレームワークを活用し、異なる視点から検証することで新たな一面が見えてくることに期待しています。

クリティカルシンキング入門

学びを深める!未来のための思考法

知識だけでは足りない? ライブ授業の録画を見て、改めて学びが深まったと感じました。特に最後に先生が言った、「知識を得るだけでは駄目で、自分の頭で考えなければ身につかない。とはいえ、学びを止めてしまうと独断に陥る」という言葉が印象的でした。忙しさを理由に学ぶ機会を持たなければ、自分の経験だけでしか考えられなくなるのではないかと、少し不安を感じました。 本当の学びは何? 改めて学ぶことの重要性を考える機会となりました。 問いは何で始める? 課題の改善策を考える際には、まず問いを立て、問いを忘れないように広い視野を持って検討することが大切だと考えます。対象によって検討内容は変わるかもしれませんが、問いや軸を忘れずに思考することが重要です。 チーム方針はどう? 来年度のチームの基本方針を検討しています。再来年度の変革に向けて、何を変え、何を変えないかを精査する必要があります。よりモチベーション高く取り組めるよう、目標設定や教育機会(研修など)についても今までのやり方を踏襲するだけでなく、広い視野で多角的に検討していきたいと考えています。

クリティカルシンキング入門

数字で掴む新たな視点と成長

数字分解の大切さは? 今回の講義では、数字を分解して考える方法や、さまざまな切り口を試し、定義を明確にしてMECEの考え方を適用する手法を学びました。普段あまり意識してこなかった視点から、改めてデータを多角的に検討することの大切さを実感し、新たな気づきを得ることができました。特に、数字に苦手意識があった私にとって、グラフに少し足して割合を示すなどの工夫が、問題点の発見を助けてくれると感じました。 採用データは何見る? また、採用に関する応募者のデータを、自身で分解し、多角的に検討する重要性にも気づかされました。これまでは、採用媒体の営業担当からの数字の共有を受けるだけでしたが、自分でデータを操作し、さまざまな属性からボトルネックを見つけていく試みは非常に有意義でした。今後は、これまでの採用データを自分なりに細かく分解し、現状の強みや弱みを洗い出して、次の募集掲載の対策に生かしていきたいと考えています。 継続的な対策は? 一度の検討に留まらず、継続的にデータを分解し、数字に基づいた対策を立案できるよう努めていきたいと思います。

戦略思考入門

最短距離で目指す戦略術とは

独自性はなぜ必要? ゴールに向かって最短距離で到達するためには、何をやるか、何をやらないかを選択し、他の人が真似しにくい独自性を持つことが重要であると再認識しました。また、戦略には計画的戦略と創発的な戦略があるという新たな視点も得ることができました。今後は、これらの理解を自分の言葉で他者に伝えられるようになりたいです。 戦略策定の鍵は何? 自部署の下期の戦略策定に関しては、まず上期の状況を分析し、継続することとやめることを選択することから始めたいと思います。各項目ごとにデータを比較し、どこに要因があるのか、なぜそうなったのかを考察します。その後、目的達成のための他の選択肢やルートも検討し、なぜそれを選んだのかをしっかりと説明できるようにしたいです。 本質はどう見極める? また、思考を深めるためには、考えを言語化し、なぜそう思ったのか、それを思う根拠を明確にすることが大切だと考えています。その上で、本当にその選択肢が必要かどうかを再度検討していく習慣をつけたいです。施策から入ってしまう自分の癖を意識し、今後改善していきたいと思います。

デザイン思考入門

試作から納得へ、学びの軌跡

ムービー構想はどう? 中期経営計画の浸透プラン立案の際、自身のビジネスユニット向けにVisionムービーを作成する提案がありました。そこで、自分なりのムービーのストーリー構成を具体化するために、イメージしている写真を集め、どのタイミングでどのようなCGイメージを使用し、どんな言葉をかけるかをスライドにまとめました。 説得はうまくいった? この資料は実際にシニアとの会議で説明し、予算を含めた外部コンサルへの委託提案として承認を得ることができました。講義で学んだ知見を提案資料に反映させたことで、シニアの納得度も高まり、試作段階の重要性を再認識する結果となりました。 挑戦は成果出た? また、講義では実際に製品を作ることがデザインや動画作成以上に効果的である点を理解しました。一方で、今回の課題であるバックパック制作のノウハウや美的センスが不足していたため、AIを活用して動画作成とプレゼンスライドの作成に挑戦しました。使用したAIやプロンプトに限界はありましたが、成果物を作成することができ、プロセス自体の重要性を理解する良い経験となりました。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

データ・アナリティクス入門

データ分析にAI活用!新たな発見の連続

ChatGPTを活用する意味は? 実践演習がメインの週だったが、データ分析は答えがない世界だと感じているので、自分で考えるだけではなくChatGPTを共に使用して問題解決を試みた場合、どのような成果が得られるかに焦点をあてて演習に取り組んだ。普段は自分の頭で考え一人で結論を出していたが、そのことに限界を感じていたため、今回の受講はAIを活用する実践の場として非常に学びが多かった。 AIの活用で得られる視点は? どれだけ訓練を積んでも、人間である以上、自らの思考には必ず偏りがある。多面的な視点でデータ分析を行うことが問題解決の第一歩であり、AIを活用して多くの視点を得ることが有効だと改めて気づくことができた。これからは、普段からAIを十分に活用するよう心掛けたい。 AI相談の工夫を学ぶ データを分析する際、必ず一歩立ち止まり、AIに素直に相談してみるようにする。AIをデータ分析のパートナーとするため、相談の仕方を工夫することも学んだ。正解を出すことを目的とするのではなく、自分の思考を広げるためのAI活用を身につけていきたいと思う。

クリティカルシンキング入門

課題解決の鍵は「問い」を立てることから

問いを立てることの重要性とは? 課題を適切に捉えるために「問いを立てる」ことの重要性を改めて学びました。今何を課題と考えるべきかを理解することで、業務の結果に大きな影響を与える重要なポイントとなります。ただ問いを立てるだけでなく、その問いを最後まで持ち続け、大きな成果物を得るために周囲と共有し、働きかけることが重要だと感じました。 プロジェクトにどう活用するのか? 現在進めているプロジェクトでは、直面する課題を解決するために、この学びを活用しようと考えています。プロジェクトの目的は単に業務を集約することではなく、現存する課題を解決することです。すべては「問い」を立てることから始まります。 バックオフィス化プロジェクトで何を達成する? 例えば、バックオフィス化プロジェクトの目的を明確にするためには、時(When)、人(Who)、手段(How)の各観点から業務を分解し、現状の課題を見極め、その解決策を考えることが必要です。また、残業時間の問題についても、このプロジェクトを通じて解決策を見つけることを検討していきたいと思います。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

戦略思考入門

最短距離で進む成功メソッド

ゴール達成の基本は? 現在地からゴールへ最短最速で進むための手段として、①~④の順番で物事を整理する方法が有効であると学びました。まず、各ステップで利用するフレームワークとその活用方法を把握することがゴール達成の基本であると感じました。 整理方法のポイントは? 具体的には、①「視野を広げて整合性を取る」、②その上で違い(差別化)を見出す、③得られた情報を基に選択する、④そして選択した情報から本質をとらえる、という流れで整理を進めます。 PDCAで何が学べる? さらに、この方法を確実に身につけるためには、PDCAサイクルを繰り返すことが大切です。①学んだ知識を実践に活かし、②うまくいかない体験を経験し、③失敗の原因を分析、④知識不足であれば新たな知識を得る、またはフレームワークの使いどころを学んだ上で、⑤再び実践に活用するというプロセスを実施します。 AI活用の効果は? また、勉学のためにAIを活用されている方がいらっしゃれば、どのような方法で活用され、どのような効果が得られているのかも教えていただけると幸いです。

データ・アナリティクス入門

誰に聞くかで変わるデータの真実

誰に聞くべき? データ収集の過程では、まず「誰に」聞くかという点が重要だと感じました。意味のある対象から情報を得ることで、収集したデータの信頼性が高まります。 聞き取りはどうする? また、情報の聞き取り方も大切です。アンケートや口頭での聞き取りなど、目的に合った方法を用いることで、精度の高いデータにつながると実感しました。特に、比較するためのデータ収集を怠らないことが求められます。 反論排除は必要? さらに、「反論を排除する情報にまで踏み込む」という視点を、より一層意識すべきだと学びました。これにより、意見の偏りを防ぎ、客観的な分析が可能になると感じています。 仮説の確認は? アクセス解析の業務で日頃から仮説を活用しているとはいえ、今回の学びは仮説を立てる際のポイントを再確認する良い機会となりました。複数の仮説を検討し、決め打ちせずに異なる切り口から網羅性を持たせることが、より説得力のある分析につながると理解しています。 実践は続くの? 今後もこの考え方をしっかりと実践していきたいと思います。

クリティカルシンキング入門

問い続ける先に未来がある

本当にそれでよい? Week1からWeek6までの学習を通して、物事の考え方の基礎となるクリティカルシンキングを学びました。自分自身に対して「本当にそれでいいのか」と問い続けることの大切さを実感し、その経験が、自分の思考の癖を改善し、イシューに正しく向き合う力へとつながったと感じています。 真のニーズは? また、営業職として日々活動する中で、相手が何を考え、何を求めているのか、真のニーズは何であるのかを常に探ることは、自分が取り得る手段を増やし、結果にも現れると考えています。加えて、営業以外の新たな役割を担う中で、直面する課題に対しては失敗を恐れず、試行錯誤を重ねながら前進していきたいと思います。 疑問を共有する? 繰り返しになりますが、問い続けることが何よりも大切です。自分が発信する問いを仲間と共有することで、より良いものを生み出せると信じています。どんなに些細な疑問であっても、相手の質問意図を正確に捉えるために、自分の考えが本当に正しい解答であるのかを批判的に自問自答しながら、学びを深めていきたいと思います。
AIコーチング導線バナー

「得る」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right