クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

データ・アナリティクス入門

代表値の落とし穴と細部の魅力

代表値の意外な落とし穴は? 代表値の有用性と、その落とし穴について理解が深まりました。データを活用する目的に応じ、代表値の背後にある背景を把握するためには、必要な手間を惜しまない姿勢が大切であると再認識しました。 毎月の数字はどう? また、毎月の売上や費用といった数字は、ひとまとめにすると他月と大きく変わらないように見えても、実際には中身が大きく異なることが多いです。このため、詳細な項目の変動にも着目し、単なる異常の有無だけでなく、次月以降への影響などを踏まえて、より深い検証に努める必要があると感じています。 内訳の分析は必要? さらに、月次決算の報告前の分析においては、全体の数字(代表値)だけでなく、必ず内訳の変動を比較することが重要です。単月の変動に留まるのか、次月以降も影響が及ぶ傾向があるのか、または対策が必要な内容なのかを、各要素ごとに分けて分析するよう心がけたいと思います。

データ・アナリティクス入門

仮説と挑戦で切り拓く未来

業務の姿勢はどう? 私は、ありたい姿やあるべき姿を常に意識しながら業務に取り組むことの大切さを実感しました。単に課題解決のための行動にとどまらず、広い視野で業務全体や自分自身のキャリアを見つめることで、さらに良い成果につながると感じています。 仮説の見極め方は? また、目標や理想とするゴールを常に意識すること=仮説を立て行動することが重要だと学びました。その上で、その仮説が正しいかどうかをフラットに判断できるために、最短時間でデータ解析を行う能力を身に付ける必要性も感じています。目的やゴールを明確にすることが、日々の訓練として非常に有用だと思います。 業務の目的は何? さらに、どんな些細な業務であっても、まずはその目的や背景を把握し、仮説や想定を立て、それを裏付ける理由付けやデータに基づいて解析する。こうした一連のプロセスを常に実践し、自分の働き方に定着させたいと考えています。

データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

データ・アナリティクス入門

フレーム活用で広がる分析の新視点

授業で何が学べた? ライブ授業では、分析のプロセスを体系的に学びました。複数の仮説を立て、それを検証することで問題解決に取り組む手法が非常に効果的であると実感しました。また、事象を考察する際には、フレームワークの意識が基礎となる重要なスキルであることを学び、これを身につけたいと感じました。 今後の戦略は? 今後は、分析ツールを利用する際にも、フレームワークを大切にしながらアプローチしていきたいと思います。普段から現場の社員にヒアリングを行い、データの内容や背景を深く理解することで、より具体的かつ有用な分析ができるよう努めます。 成果をどう伝える? その上で、収集したデータを効果的に可視化し、社内のメンバーにわかりやすく説明できるよう、引き続き努力していきたいと考えています。

データ・アナリティクス入門

目的達成!データの活かし方

データの活用法は? データを見ると、低い指標や原因そのものは一目で把握できるものの、その背景や改善策を考えるのが難しいと実感しました。データ分析自体は非常に重要ですが、それはあくまで目的達成のための手段であると感じています。今後は、どのように目的達成に向けて効果的に活用すべきかを学び、スキルを磨いていきたいと思います。 離職率改善と顧客獲得は? 離職率の低下を目指す際には、原因の調査とその対策、また迅速な対応策の立案に今回の学びが大いに役立つと感じています。また、新規顧客の獲得においても、既存顧客が魅力に感じるポイントや、プレゼンテーション時の評価に注目し、その分析から得られた知見をリード獲得の改善に活かすことができると考えています。

データ・アナリティクス入門

平均を極めるデータ思考

どの平均値を選ぶ? どのような状況でどの平均値を使うべきかについて学ぶことができ、非常に有益でした。今まではさまざまな種類の平均値を扱ってきましたが、加重平均や幾何平均を利用する理由については深く考えたことがありませんでした。今後は、背景にある意図を意識し、何のため、なぜその平均値を選ぶのかを明確に捉えたいと思います。また、より適切な平均値を選択できるよう努めたいと考えています。 データの見方は? 一方、データ分析においては定性分析の要素が多いことから、平均値を用いる際にはデータの読み解きに十分な注意が必要です。業務に活かすためには、どの視点からデータを捉えるか、そして他の視点が存在しないかを検討することが大切だと感じました。

データ・アナリティクス入門

単純平均だけじゃない!学びの深層

代表値選びのポイントは? あまりにも多くの消費者データを見る際、単純平均だけで全体を判断してしまう傾向にあると改めて感じました。そのため、代表値の計算方法を再検討する必要があると実感しています。代表値として単純平均、加重平均、幾何平均、中央値の4つの方法があること、またそれぞれのばらつきを標準偏差で評価するプロセスが欠かせない点を改めて認識しました。 標準偏差の意義は? また、標準偏差の公式は覚える必要がないといわれていますが、その理由についてより深く理解したいと考えています。√の記号に初めて触れたのは高校生の頃のことだったので、改めてその意味や背景について興味を持つようになりました。

データ・アナリティクス入門

平均だけじゃ見えない数値の物語

平均と標準偏差は何が違う? 普段の業務で平均値はよく目にするものの、標準偏差にはあまり注目していませんでした。しかし、データの比較が分析の基本であると意識する中で、単に単純平均だけで比較するのではなく、その比較自体に意味があるかどうかを検討し、適切な指標を選ぶべきだと考えるようになりました。 背景にある要因を探る? また、私の業界では他エリアでの優れた事例を自地域に取り入れることが一般的です。その際、来客数や平均単価といった数値に注目する場面が多いですが、単なる数値の比較に留まらず、背景にある要因について仮説を立て、深く考察する姿勢が重要だと感じています。

戦略思考入門

やさしく学ぶ経済性のヒント

どの経済性が重要? コスト低減のためには、「規模の経済性」「習熟効果」「範囲の経済性」「ネットワークの経済性」を理解することが重要です。現状のデータを正確に把握するとともに、外部要因も考慮し、どの要素を活かせるかを見極める必要があると学びました。 属人依存を解消? また、規模の経済性と範囲の経済性については、これまでの製造業での取り組みでも実践してきた内容です。一方で、習熟効果の背景には、特定の個人に依存するリスクが潜んでいると感じています。そのため、属人化の問題を解消するために標準化を進め、習熟効果を効果的に引き出す対策が求められると思います。

データ・アナリティクス入門

普段の数字が広げる知の扉

代表値の理解は? 平均値や中央値など、日常的に目にする代表値は理解しやすく、復習にも非常に役立ちました。一方で、普段はあまり接する機会のない冪根といった内容を新たに学ぶことで、知識の幅を広げることができた点が大変有意義でした。 数字の裏側は? また、業務で扱う数字だけでなく、経営陣が提示する数値についても、その背景や算出方法を十分に把握する重要性を感じました。今後は、根拠をしっかりと意識しながらデータを活用することで、クライアントに対してより的確な判断や提案ができるよう努めたいと思います。

「データ × 背景」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right