戦略思考入門

データで描く経営の未来

感情論よりデータは? 今週の学習を通じて、課題解決において感情論ではなく、客観的なデータに基づいた多角的な分析と、論理的に伝える力が不可欠であるという点を強く実感しました。タクシー業界の市場縮小、運転手不足、燃料費の変動リスクなど、一見ネガティブな情報も、なぜ自社にとって問題なのか、またその解決策がどのように経営に貢献するのかを具体的に示すことが重要だと感じました。例えば、配車アプリ導入の際には「便利だから」という感情論ではなく、実働1日1車あたりの運送収入の向上や燃料費削減といった定量的なメリットを提示し、説得力を高める必要があります。同様に、提携相手との関係では、懸念に対して新たな顧客ネットワークへのアクセスやノウハウ共有といった共存共栄のメリットを論理的に伝えることが重要でした。 実務でどう活きる? また、この学びは私の実務にも大いに役立つものです。これまで漠然と抱えていた課題も、現状を数値で把握し、その原因を深掘りすることで具体的な解決策へと繋げることができると考えます。特に、外食業態の現場では新メニュー開発や既存メニューの見直しにデータ分析の手法を応用することで、「現状維持は衰退」という視点から戦略的にアプローチできると感じました。顧客データを詳細に分析し、どのメニューが十分に売れていないか、また潜在的なニーズがあるかを客観的に把握することにより、食材原価の変動リスクを踏まえた仕入れルートの見直しや、ロス削減を図るメニュー設計など、収益性向上につなげることができます. 店舗戦略は何が鍵? さらに、店舗の集客戦略やマーケティング活動においても、周辺の人口構成や競合店の情報を詳細に分析し、ターゲット顧客を明確化することで、適切なプロモーション戦略を展開することが可能です。例えば、若年層が多いエリアではSNSを活用したプロモーション、高齢者が多い地域ではテイクアウトやデリバリーサービスの導入など、具体的な戦略を立案していきます。また、店舗の強みや独自性を明示し、効果的に伝えることで、顧客へのアピール力を高める狙いがあります. 人材育成方法は? さらに、従業員の育成やシフト管理の効率化にも今回の学びは役立ちます。従業員のスキルや得意分野をデータとして可視化することで、適切な人員配置を行い、少ない人数でも店舗運営の質を維持する工夫が求められます。従業員教育においては、単にマニュアルを渡すのではなく、売上データや顧客からのフィードバックを共有し、なぜそのメニューが支持されているのか、背景を理解してもらうことで、サービスの質を向上させる取り組みが重要だと感じました. 売上分析のポイントは? まずは、POSシステムの売上データを活用し、日次・月次売上だけでなく、メニューごとの販売数、時間帯別の客数、客単価、曜日別の変動などの詳細な数値を抽出し、現状分析を強化します。特定メニューの売上低迷が続く場合は、その原因が季節性、価格設定、競合店の影響のいずれかを深掘りするために、顧客アンケートや口コミ分析も併せて実施します. 会議運営をどう改善? 次に、分析結果を基に新メニュー開発会議の進め方を見直し、シェフのアイデアに頼るだけでなく、データに基づいた「売上改善」や「顧客ニーズへの対応」を目的とした会議運営を行います。具体例として、売上が低迷するランチメニューを刷新して客単価の向上を目指すといった目標設定を行い、食材選定、原価計算、試作の各段階でデータを活用しながら評価します。会議では、単なる味の評価だけでなく、競合との比較やターゲット層への訴求力など多角的な視点から議論を進めます. 情報共有はなぜ重要? 最後に、従業員間での情報共有と教育を強化することで、データと論理に基づいた経営判断ができるよう努めます。抽出した売上データや顧客フィードバックを定期的に共有し、各自が「なぜこのメニューが売れているのか」を理解する機会を設けることで、課題意識を高め、店舗全体の生産性と顧客満足度の向上につなげていきます.

デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

クリティカルシンキング入門

問いで拓く戦略の未来

実例から学ぶ分解方法は? 実際のファストフード店の事例を通して、分解の仕方が違った切り口で学べたことが印象的でした。Week2の内容を思い出しながら、既存のパターンに加えて新たな切り口も見つけ、復習とパターンの拡充に繋げたいと考えています。 イシュー特定はどうすべき? また、イシューの特定が適切な打ち手を導く上で重要であると実感しました。打ち手を先に検討しても、イシューの特定が不十分では、施策が誤った方向に向かう可能性があります。実例では、客単価が下がったことを背景に、来店人数を増やすことで売上を向上させる施策が取られていました。もし客単価向上の施策を優先していたら、来店人数の伸びに結び付かなかったかもしれないと思います。 データ出し方は正確? データの出し方についても、漏れがあると問題特定が誤るリスクがあると学びました。データの提示方法や切り口について、「本当にこれでよいのか」と自問し、他者の確認を重ねることが重要であると感じています。 意見分裂をどうまとめる? さらに、イシュー特定を深めるために、チーム内で意見が分かれる場合のアプローチ統一や、異業界での異なる切り口を考えることも示唆されました。問いを常に意識し、共有することで、組織全体の方向性が明確になると理解しました。問いを中心に据えることで、議論が脱線せず、具体的かつ一貫した分析が可能になると実感しています。 問いの正しさは確認できる? 商談においても、そもそも自分たちが立てる問いが正しいかどうかを精査することが必要です。お客様との認識すり合わせを丁寧に行い、正確なイシュー設定を心がけることで、より適切な提案へとつながると考えています。また、これまではアイデア出しから議論を始めるケースが多く、議題が散漫になることもありましたが、今後はまず「何が課題か」を共有し、その上で話し合いを進めるようにしたいと思います。具体的には、イシューを画面共有して可視化する工夫を取り入れ、焦点がずれないよう意識していきます。 成果に結びつく問いは? 今回の学びは、チーム全体での売上向上施策を検討する際にも大いに生かせると感じています。正しい問いを立てることが、成果に向けた思考と行動の第一歩であると実感しました。これからは、上司と相談しながら「何が本当の課題なのか」を問い、仮説とデータ分析に基づいた多角的なアプローチを進めていくつもりです。 統一アプローチの秘訣は? また、誤ったイシュー特定を防ぐためのチェックステップや、チーム内で意見が割れた場合の統一アプローチについても検討し、日々の業務や学習に分解思考を取り入れる意識をさらに高めていきます。例えば、普段からニュースを読む際にも「どのような構造か」「なぜこうなったのか」を意識することで、多様な視点を養っていきたいと考えています。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

データ・アナリティクス入門

早朝のひらめきと挑戦の軌跡

環境の影響は? 影響を受ける環境に身を置くこと、インスパイアしてくれる人との出会い、そして集中できる場所と時間―特に早朝という神のような時間―が、私の学びにおいて大切な要素です。 仮説検証は楽しい? 実際の仕事において、これまでも仮説を立て検証する作業を行っていましたが、最近ではよりデータに基づいた仮説検証の楽しさを実感しています。データから読み取れる事実に裏付けられて、考えうる仮説を突き詰める過程は、新たな発見に繋がっています。 SNSの検証、どう? ソーシャルメディア上のコンテンツに関しても、投稿時間の違いやビジュアルの縦横比、オーディエンスに響く文言など、様々な要素をひとつずつ検証しています。AIDAのフレームワークを用い、質問で注意を引き、アクションへと繋げる流れを意識しながら、次に目を引くキャッチコピーをより印象的にするための勉強も始めました。オファーとそれを得ることで変わる姿を具体的に描くことで、より説得力のある提案を目指しています。 ストーリーズ挑戦は? 次のステップとして、活用が十分でなかったストーリーズ機能に挑戦し、15秒間の映像や24時間表示される小さな花火のような瞬間を打ち上げることを計画しています。また、制作側として発案を重ね、結果を示すことで納得してもらうための明確な目標が必要であることにも気づきました。 文章で感じる影響は? たとえ誰も読まなくても、文字にすることで自分自身がその内容に触れ、影響を受ける事実を実感しています。企画会議の前の段階から、来週のコンテンツを思い描き、寝ながらもどんな内容にするか妄想する中で、誰に届けたいのかを心に描いています。たとえば、電車の中の目の前の人や、全く異なる背景の人々を念頭に置くことで、多様な興味に応えられる提案を考えています。 データで何が分かる? データを示して「これは縦が良い」「このサイズが適切」と提案できるならば、その発言力は格段に高まります。しかし、それ以上に「なぜ伝えたいのか」という純粋な動機が伴っている方が、何よりも楽しさを感じながら取り組めると考えています。生存者バイアスに囚われず、既存の方法に頼らない挑戦―不可能を可能にするための試行錯誤―を続ける日々は、私にとって大きな学びです。 独自の道は正しい? 人と違うアプローチをすることが、これからの時代に必要なのではないかと感じています。自分なりの方法で切り開いているという実感は、自己肯定感にも繋がり、実に多くの発見と成長の糧となっています。 読者に呼びかける? 最後まで読んでいただいた方へ。ぜひ友達になって、他の人がどんなことに興味を持ち、どんな価値を見出しているのかを共有できたら嬉しいです。どうぞよろしくお願いします。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

リーダーシップ・キャリアビジョン入門

指示から支援へ―リーダーの転身

リーダーと管理の違いは? リーダーシップとマネジメントの違いについて学び、リーダーシップは変革を推進し、長期的なビジョンの提示やメンバーの統合を担う一方、マネジメントは計画や予算、組織の人員配置などルールに基づいて効率的に運営する点にあると理解しました。現代の不確実な環境では、目的や状況に応じた使い分けが重要だと実感しています。また、以前「無意識で人をマネジメントする」という表現を用いていた自分の考えに誤りがあったことを学び、大変有意義でした。 パスゴール理論はどう活く? これまでの自分の行動が、パスゴール理論を通して明確に整理されたことも大きな収穫です。業務経験が浅い若手や中途社員に対しては、これまで指示型のアプローチを取ってきた一方で、彼らが成長するにつれて支援型へとシフトしていたことに気づかされました。一方で、仕事全体や環境要因の把握が十分ではないと感じたため、仕事の背景や現状分析により注力する必要性を再認識しています。 柔軟性はどう考える? また、マネジリアルグリットに関する学びを通して、人間への関心と業績への関心という自分の特性にも気づかされ、状況や相手に応じた柔軟な対応が求められると感じました。 新リーダーの初手は? 新たに未経験分野のチームリーダーを任されたことから、まずは「どんな仕事か」を理解するために環境要因の把握と分析を行っています。リーダーとしての4つの行動を実践するためには、まず部下の仕事の進め方や能力を観察し、適切な対応を見極めることが重要だと考えています。これまで経験の浅い部下には指示型で接してきましたが、成長に伴って支援型へ移行し、ゴールを明確にしながら自律的に考えて行動できるよう支援していきたいと思います。 チーム状況はどう把握? 新チーム発足の初期段階においては、まず次の取り組みを予定しています。まず、チーム全体の環境要因を分析し、市場やクライアント状況を理解するために、営業同行や過去データを活用して状況を把握します。次に、各メンバーとの面談を通じて、仕事に対する考え方や強み・弱み、価値観を聴取し、普段の業務を観察しながらパスゴール理論のどのアプローチが適しているかを検討します。また、チーム会などでゴールを共有することも重要だと考えています。 信頼構築のコツは? 基本的には、新チーム発足時という状況を踏まえ、まずはメンバー一人ひとりに興味を持ち、会話を重ねながら観察し、最適な関わり方を模索することで、信頼関係を築いていきたいと思います。

データ・アナリティクス入門

分析に魔法なし!日常に隠れたヒントを探せ

分析とは何を理解するべき? 分析とは何かについて理解しているつもりではあったが、それを言語化することが出来ていないことに気づかされた。また、ライブ授業や動画学習で言及される内容は日常的に行っていることでも、その目的や意図を明確にすることの重要性を改めて認識した。 ライブ授業での学びとは? 【ライブ授業】 分析の基本的な考え方として、「具体的に」かつ「はっきり」とさせることで意思決定に役立てることが非常に印象的だった。これは当たり前のことながら、この理解により方向性や手法を誤らないための指針として機能することがわかった。さらに、棒グラフについては、縦よりも横の方が差を認識しやすいというテクニックが参考になった。分析が第三者に理解され、納得してもらうことが目的であるため、このようなテクニックは非常に有意義であると感じた。 動画学習で気づいたことは? 【動画学習】 「Apple to Apple」のように、分析には条件が等しいものを比較することが重要である一方、世間には意図的に「Apple to Orange」を行っている情報も存在する。この講義では、提示された資料の分析目的や意図を意識することの重要性について学んだ。また、生存者バイアスの考え方も参考になった。目に見えるデータに偏りがちだが、隠れたデータが示す意味について仮説を立てて考えることが重要であると学び、業務に生かしたいと思った。 後輩指導にどう活かす? 後輩の指導や同僚の資料作成の際には、この講義で学んだ考えを意識して取り組みたい。その分析の目的は何なのか、比較対象は正しいのか、隠れたデータが何を意味しているのか。与えられた情報だけでなく、背景を含めて俯瞰する視点を持ちたい。また、自分の行う分析や提案に際しても同様に、目的を持ち、仮説を立て、対象を選定し、隠れた情報に注意を向けることを意識する。 高精度な需要予測を目指すには? 私の担当する製品はSKUが非常に多く、その需要は季節や景気、エンドユーザーの意向によって大きく左右される。また、競合他社の動向にも影響を受け、需要予測が難しい。これまでは自部署の過去データのみを参考に需要予測と予算を立案していたが、これは客観性に欠けていた。今後は業界実績やその時のトピックスも取り入れることで、生存者バイアスを避け、より精度の高い分析を行いたいと考えている。

データ・アナリティクス入門

実践で磨く解決力の秘密

プロセスはどう区別? 今週は、問題解決のプロセスにおいて、仮説を立てて検証し、解決策を考えるための考え方を学びました。まず、WHYの段階では、各プロセスを分けて考える手法の重要性を再認識しました。プロセスごとに名称や意味合いを設定し、母数や基準が異なる場合には「率」といった数値化の視点を取り入れることで、どの段階で数値が少なく、全体の推移がどうなっているかをバランス良く把握することが大切だと感じました。 対概念の効果は? また、原因の仮説を立てる際には、「対概念」という方法を用いることで、問題に関わりのある要素を洗い出し、それらを2つの対に分けることで、より幅広い視点から原因の可能性を探るアプローチの有効性を学びました。 A/Bテストの意味は? さらに、HOWの段階では、A/Bテストを通して仮説を実際に試し、データを集計しながら解決策へと繋げる方法について学びました。A/Bテストを行う際は、①目的と仮説を明確にすること、②一度に一要素ずつ検証すること、③条件(時間や期間など)を揃えることの3点が重要であり、これによりリスクを抑えつつ効果的な施策の検証が可能となります。 知識集約はどう進め? また、今回の学びを通じて、これまでの知識を集約し、プロセスを意識して丁寧に分析する重要性を再認識できました。仮説設定の根拠を明確にし、必要なデータを整理することで、より高度な分析に繋げるための前提意識を持つことが求められると感じました。 薬剤師業務の改善は? 一方、薬剤師業務のボトルネックの分析においては、業務を細かいプロセスに分解し、どの段階で時間と労力がかかっているかを明確にすることが、従業員の残業時間や患者の待ち時間短縮に直結する重要なポイントであると学びました。こうした検証を通して、設備の導入などの改善策の効果を試験的に確かめ、必要に応じて他の現場にも展開する判断材料とする考え方は、非常に実践的だと感じました。 A/B分析で見直す? さらに、部内でA/B分析を活用して、例えば店舗の処方箋枚数の伸び悩みという問題に対して、複数の要因を一つずつ検討し、原因を絞り込んだ上で対策を考える手法も学びました。これにより、問題の背景にある具体的な要因を多面的に理解し、適切な対策立案へとつなげることができると実感しました。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

アカウンティング入門

数字が築く信頼と説明の力

会計は何を伝える? Week1の学びの中で、最も印象に残ったのは、アカウンティングが単に数字を扱うだけでなく、説明責任を果たすための手段であるという点でした。財務報告は、顧客や投資家にビジネスの実態や判断理由を伝え、信頼を得るプロセスであると実感しました。数字の良し悪しを評価するだけではなく、その背景や意味を詳しく説明することが信頼構築につながると気づかされました。 数字の背景は? たとえば、売上増加が一時的なキャンペーンによるものか、リピート顧客の増加によるものかで意味合いは大きく異なります。こうした背景を説明することが、単に数字で語る以上に重要だと感じました。 業務効率化の目的は? 現在進行中の経理業務効率化プロジェクトでは、なぜその処理が必要なのかを明確にするため、処理フローを図解し、関係者ごとの視点で要点を整理した説明資料を作成しています。今後は、売上推移のグラフに要因分析のコメントを加えたり、プロセス毎の処理件数を可視化したりすることで、財務データとその意味をまとめ、現場の改善活動に活かしていく予定です。 説明責任の価値は? この考え方は、経理業務の効率化プロジェクトや月次報告資料の作成、説明の場面で特に役立つと感じています。社内の営業部門やマネジメント層に対して、業務成果や処理の背景をしっかりと説明する際にも、アカウンティングの「説明責任」の視点を活用したいと思います。 資金繰りの背景は? また、「なぜこのフローが必要か」や「なぜこの数値になったか」を、単なる報告に留まらず、損益計算書や貸借対照表の視点と結びつけて説明することで、たとえば特定の対応がどのように資金繰りに影響を与えたかといった具体的な効果を伝えられるようになると考えています。 処理フローの必要性は? そのため、まずは処理フローと財務数値との関連性を整理し、簡単な図や表で関係者に分かりやすく共有することが重要です。さらに、毎月の報告書には、数値の背景にあるビジネスの動きを具体的にコメントとして添えることを心がけ、数字の「正しさ」だけでなく「意味や背景」を丁寧に説明する姿勢を継続していきたいと思います。 Week1は何感じた? Week1の内容に関しては、特に追加する事項はありません。

「データ × 背景」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right