データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

クリティカルシンキング入門

前提に隠された真実を探る

思考の前提は何? 「自他の思考のクセがある」という前提で物事を考える大切さに気づかされました。誰が正しい、何が正しいという考え方ではなく、どの立場や背景、軸で考えたときにその結論が成り立つのかを整理するプロセスが重視されると理解しました。また、クリティカルシンキングは単なる批判的思考にとどまらず、他者への想像力や思いやりが含まれる点に、新たな視点を得た気がします。 忙しい中で可能? 業務において講義で学んだ考え方を活用したいと考えていますが、実際には忙しさに追われ、新しい思考法を試す余裕がなかなか持てないという現実があります。しかし改めて考えると、問題は既存の考え方に固執することではなく、クリティカルシンキングを実践する環境が整っていない点にあるのではないかと感じました。そこで、前提を疑う視点を活かし業務プロセスを見直すことで、より良い思考法を実践するための時間と環境を確保していきたいと思います。 企画で前提を疑う? 企画や新規プロジェクトの立案では、社内外の成功事例や市場のトレンドをそのまま受け入れると、本質を見誤るリスクがあります。単に表面的な成功パターンを模倣するのではなく、成功の背景や条件、つまりどのような前提からその結論が導かれたのかを批判的に検証することが重要だと感じました。 市場情報は何を見抜く? また、市場調査や施策の検証においては、利用する既存データが調査者や分析者の意図を含んでいる場合があるため、情報の出典や意図、背景を確認し、客観的な評価を行う必要性を強く実感しました。さらに、新たなメンバーやチームとの連携シーンでは、互いに異なる前提や価値観を持つことを意識し、自己紹介の段階で譲れない価値観や得意な仕事の進め方などを共有することで、認識齟齬を防ぐ工夫が大事だと考えています。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

データ・アナリティクス入門

ナノ単科で見つける解決のヒント

何が問題の始まり? 問題解決には、まず「何が問題か」「どこに問題があるのか」「なぜ問題が生じたのか」「どのように対応するか」というプロセスがあることを学びました。最初に、直面している課題や状況から現状とあるべき姿のギャップを把握し、次に客観的なデータを用いて問題箇所を詳細に特定します。この際、MECEやロジックツリーの手法を用いることで、抜けや重複なく整理することが重要です。さらに、問題の背景にある原因を細かく分解し、真の原因に迫る作業が求められます。最後に、さまざまな案を検討し、現状と理想を照らし合わせながら、適切な対策を導き出していきます。 なぜデータが重複? また、phaseごとに製造原価の算出を実施しており、算出データの取り込みとその活用が行われています。しかし、各phaseで実施している業務自体はほぼ同じ内容でありながら、同一データの取り込みなど、重複して実施している作業が存在しています。理想的には、データベースにphaseごとのデータが一元管理され、必要な時に迅速に利用できる体制が整っているべきです。しかし、現状では必要な時に都度データを作成し、同じ内容を複数回取り込むなど、業務に無駄が生じています。 原因はどう分解? このギャップの原因を明確にするためには、実際の業務フローや工数、業務のインプットとアウトプットの詳細、さらにはシステム上の問題点など、ファクトに基づいた確認が不可欠です。定量的なデータを捉えた上で仮説を立て、MECEやロジックツリーといった手法を活用して問題点を細かく洗い出します。こうした手法により、データの切り口を複数持ち、各要素の影響度を把握してプライオリティを付け、効率的に問題解決へと導くことができます。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

アカウンティング入門

財務三表で見える!企業理解の新視点

財務三表の意味は? アカウンティングについての学びでは、財務三表は単なるデータの集合ではなく、それを用いて企業の業績を説明するためのツールであることを理解しました。これにより、以前は苦手と感じていた財務面について、シンプルに捉えられるようになりました。私の中には、財務三表を完璧に理解しなければならないという先入観がありましたが、実際にはその構造を理解することで、未解決の問題は調べて対応できるという考えに変わりました。また、アカウンティングは専門家だけが扱うものだと思っていましたが、さまざまな立場の人が財務状況を説明し、理解できるための汎用性のあるものという印象に変わりました。 月次報告の意義は? 月次報告については、報告者の視点や議論の適正さを考慮し、違和感があれば具体的な確認を心がけています。月次報告と年間目標の関連性を意識しつつ、現状をアカウンティングの言葉で説明できるように努めています。また、自社の財務三表の特徴を把握することで、企業体質の理解にも役立てています。1年単位に留まらず、さらに3年、5年単位で会社業績を追いかけられるようになりたいと思っています。 分析の視点は? さらに、月次報告に対しては、事業における価値提供の方法や資産活用結果という観点から、財務として意義のある分析や説明がなされているのかを常に疑問として持つ視点も大切です。財務三表やその元になるデータへの見方や解釈は、立場によって変わることを理解し、他者の意見や背景を積極的に探るよう心がけています。中長期的な財務目標に到達するための準備や課題についても、アカウンティングの視点で検討し、自社及び他社の決算報告書を読み、自分なりの解釈を築いていきたいです。

クリティカルシンキング入門

切り口が切り拓く学びの可能性

データは何を伝える? 表やグラフを用いてデータを可視化すると、数字そのものだけでは見えなかった切り口が浮かび上がり、新たな示唆を得ることができると感じました。単なる数値比較だけでなく、比率の違いを明確に示すことで、より深い理解につながります。 年齢の背景はどう? また、年齢などの属性を分解する際は、機械的な年代区分に頼らず、その背景や特性を考慮することが重要だと改めて実感しました。単一の切り口に固執せず、同じ年齢層内でも別の観点から分析する工夫が求められると感じます。 切り口の秘訣は? 切り口を設定する際は、When/Where/Howといった観点を取り入れることで、網羅的かつ多角的な分析が可能になります。たとえ一つの切り口で顕著な特徴が見えたとしても、それだけに満足せず、さらなる検証を重ねることが大切です。 提供方法は適切? 実際に、生命保険のある支払事由発生状況の数値データを、年代別や発生時期といった切り口で分解し、営業現場に提示した経験があります。しかし、この講義を聞いて、その提供方法が目的に十分沿っていたのか、またはもっと細かく分解する余地があったのかと自問する機会となりました。今後は、まず自分なりに目的を明確にした上で、When/Where/Howの観点から再度切り口を検討したいと考えています。 新たな切り口は? せっかく取得したQ2のデータを活用し、まずはどのような切り口が設定できるのか、単純な年代別ではなく異なる観点からの分解が可能かどうかを試してみようと思います。そして、ある程度データを分解した後は、とにかく可視化に努め、動きながら検証を進めることの重要性を再認識しました。

デザイン思考入門

共感×問題定義で挑む成長術

共感はどう活かす? デザイン思考の5ステップを学ぶことで、全体の流れが体系的に理解できました。特に「共感」と「問題定義」の重要性が印象に残り、表面的な言葉だけでなく相手の背景や感情をくみ取って本質的な課題に迫るアプローチを再認識することができました。日々の業務において、現場の方の話を丁寧に聞く大切さを改めて実感する良い機会となりました。また、プロトタイプやテストを通じて改善を図る考え方も、提案活動に活かせると感じています。 現場の実感は何? 私の業務では、社内の各部門で発生する業務課題や非効率な業務フローのヒアリングを行い、データやデジタルの力を活用して改善提案をしています。今回の学びで得た「共感」「問題定義」「発想」「試作」「検証」の流れは、実際の現場支援プロセスに即していると感じました。特に、現場の方が本当に困っている点を深掘りする「共感」と、課題を的確に把握し整理する「問題定義」のステップは、今後のヒアリングや提案活動において意識していきたいポイントです。自分の仕事をより意味のあるものへと昇華させるヒントを得ることができました。 未来の改善はどう? 今後のヒアリング業務では、相手の状況や感情に寄り添い「共感」をしっかりと行い、話の中に潜むニーズや課題の背景を深く理解することを意識します。そして、「問題定義」の段階で課題を整理し、関係者と共通認識を持つことに注力します。必要に応じて、可視化やプロトタイプのアイディア出しも行い、改善の方向性を早期に示す工夫を取り入れます。小さな実践でも「試してみる」「やってみる」姿勢を大切にし、相手と共に課題を乗り越えていくパートナーとして活動していくことが今後の目標です。

クリティカルシンキング入門

視点が変える!課題解決のヒント

分析切り口はどこ? まずは、何を求めたいのか、またそのためにどんなデータをどういう切り口で分解するかを明確に整理することが大切です。具体的な切り口をいくつか試すことで、問題が可視化され、思いがけない発見や気付きが得られると感じます。また、会議で使用する資料も、今までの内容をそのまま繰り返すのではなく、新たな視点や切り口を取り入れる提案をしていきたいと考えています。 入院現状はどうなっている? 次に、高齢者を対象とする長期療養病院では、入院期間が短くなっているために収入が減少している現状があります。コロナ以前は、入院期間が1〜2年に及ぶケースが多かったのですが、現在は短期入院の後、一人暮らしの自宅に戻るケースが増え、独居高齢者や老老介護の現状が見受けられます。こうした背景をいくつもの理由から分解して整理し、どの層にどのようなニーズがあるのかを早急に把握し、対応策を検討する必要があります。そのため、入院患者の年齢、病名、入院期間などで患者構成を分け、「入院期間別のニーズ」として分析することが、違った側面からの理解につながると考えられます。高齢化が進む中、独居高齢者や老老介護で自宅療養を選択する方々へのアプローチを見直すとともに、そもそも当院の長期療養というカテゴリー自体が適切なのかを検討し、入院・退院患者のデータを根拠に多角的な課題の洗い出しを進めることが急務です。 実践支援はどんな風に? また、少人数の部署で自分一人で学んで実践しようとすると、他のメンバーがどのように感じるかという懸念があります。学んだ知識を円滑に実践するための、効果的な声掛けやサポートのヒントについても、アドバイスをいただけると助かります。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

クリティカルシンキング入門

思考を深めるクリティカルシンキングの秘訣

なぜ自己反省が大切? クリティカルシンキングの本質は、他者や提案を否定することではなく、自分自身の思考プロセスを客観的に振り返ることにあります。たとえば、「なぜ私はこの選択肢を良いと判断したのか」「どのような経験や価値観がこの結論に影響しているのか」といった自問を通じて、自身の思考の偏りや前提に気づくことが重要です。また、「自分の考えが絶対に正しい」という固定観念を避け、他者の異なる視点や経験から謙虚に学ぶ姿勢も求められます。チームメンバーや関係者との対話を通じて、自分が気づかなかった新たな視点を積極的に取り入れることで、より深い理解と柔軟な思考を育むことが可能になります。 どうして質問が大事? クライアントワークで先方とコミュニケーションを取る際にも、相手の言葉をそのまま受け入れるのではなく、「なぜ必要なのか?」といった疑問を深堀りすることを心がけています。実際の会話では、「その機能が必要な理由は何ですか?」「それによってどのような効果を期待されていますか?」といった質問を通じて、目的や背景を掘り下げ、より深い理解を得ることを意識しています。 なぜ市場を選ぶ? 新規事業の戦略を練る際も同様に、市場調査とターゲット層の明確化を行い、「なぜこの市場なのか」「なぜこのタイミングなのか」という視点で検証を重ねます。分析業務のレポート作成においては、単なるデータの羅列ではなく、「なぜこの結果になったのか」「どのような施策が有効か」といった要素まで考慮し、具体的なアクションにつながる提案を含めます。これにより、情報がより具体的で理解しやすくなり、実用的な価値を提供することができます。

クリティカルシンキング入門

切り口を増やして本質を探る

なぜ切り口が大事? 今週の学習で最も印象に残ったのは、データを分解する際に「切り口を増やす」ことの重要性です。最初は単純に「個人客が減った」「大人客が減った」といった表面的な数字にとどまっていましたが、切り口を組み合わせて分析することで、異なる特徴や原因が浮かび上がるのを実感しました。例えば、博物館の入場者減少をテーマとした演習では、一見分からなかった団体の内訳や大人と子どもそれぞれの動向が、交差する視点を取り入れることで明らかになりました。数字だけを見るのではなく、「本当にそうか?」と問い直しながら多角的な視点で分解する姿勢が、より正確な理解へとつながると感じました。 どう実務に活かせる? また、今回学んだ「切り口を増やして分解する」という方法は、私の業務においても大いに役立つと感じています。資源価格の変動を分析する際にも、単に価格の変動を確認するだけでなく、マーケット全体の動向や地政学的リスク、関連資源の影響など、複数の視点から背景を探る必要があると気づきました。今回の演習を通じて「本当にそうか?」と疑問を持ち続ける姿勢の大切さを学び、今後は一つの要因だけで判断せず、複数の切り口から分析する習慣をつけていきたいと考えています。 どこまで分解すべき? 一方で、物事を分解する際に「どこまで分解すべきか」「ここまでで十分だという感覚はどう育てるのか」という疑問も生じました。分解を極めすぎると、説明する内容が増えすぎて逆に過剰な分析になってしまう懸念もあります。どこが引き際か、判断するための具体的な基準や考え方について、今後さらに学んでいきたいと感じています。

「データ × 背景」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right