0%
あと3分で読了
point-icon この記事のポイント!
  1. 比較基準整え仮説重視が鍵
  2. フレームワーク継続実践大切
  3. 正確評価は背景考慮必須

A/Bテストの見直しは?


業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。

フレームワーク活用法は?


また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。

データ分析はどう行う?


さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。
※上記の投稿は、受講生より許可を得て掲載しています。

関連記事

【2025最新戦略】メールマーケティングとは external link

人気記事

help icon

ナノ単科とは?

実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
R.M
20代 女性 一般社員/職員
受講科目
データ・アナリティクス入門
実践につながる 学習習慣が身に付く 仲間と学び合える

総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。

avatar
A.S
30代 女性
受講科目
データ・アナリティクス入門

良かった点
データ分析の前提の考え方、意識すべきことが体系的に学べた。
違う業種の人の意見が聞けたのも貴重な機会だったと思う。

気になる点
口コミ通りといえばそうだが、想像していたよりも実践的なことは割と少なかった印象がある。
アプリやページの不調があったのが気になった。
また、グループワークはテーマによってグダグダ感が出てしまった時があった。

avatar
Y.M
30代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい モチベーションが上がる

大変有意義な1.5ヶ月でした。データ分析を学びたい!と飛びつきましたが、課題解決スキルが根本的に重要であり、その中でデータ分析がどう活かされるか?の流れを実践とともに学びました。
育児と仕事との学びの両立に苦戦しましたが、なんとか食らいついてよかったです!ありがとうございました。

「データ・アナリティクス入門」を受講した方の学び

データ・アナリティクス入門

プロセスで掴む本当の解決法

プロセスの分解法は? この教材を通して、まずプロセスを細かく分解するアプローチの大切さを実感しました。複数の選択肢に対し明確な根拠を持たせた検討方法は、特にA/Bテストの事例でよく表れており、低コストで短い工数で試作を行うことが可能な場合、ウェブマーケティング以外の分野でも有効に活用できるのではないかという視点が印象的でした。 総合演習の学びは? また、総合演習において、目先の課題に直面した際にデータを丹念に集め、分析によって課題を分解することで、予想外の部分に問題が潜んでいることや、そこから新たな解決策が浮かび上がるというプロセスを学びました。これにより、新規事業においては、問題が発生したときに単に管轄部署だけに対策を求めるのではなく、広い視野で根本的な解決策を見出すアプローチの重要性を再認識することができました。

データ・アナリティクス入門

小さな実験、大きな発見

テスト比較の狙いは? A/Bテストでは、施策の比較効果を検証するため、比較対象のグループ間での差異を可能な限り限定することが重視されています。例えば、目的や仮説を明確にし、検証項目をしっかり設定することが大切です。また、テスト対象は1要素ずつに限定するべきであり、複数の要素を同時に検証したい場合は、別の手法を検討する必要があります。さらに、比較実験は同時期に実施することで、外部要因の影響を排除する狙いがあります。 利用段階の課題は? ファネル分析については、ユーザーの利用段階ごとに各プロセスを分解し、どの段階で離脱が発生しているかを明らかにする手法です。デジタルマーケティングでの活用は非常に効果的ですが、営業活動における利用も十分に期待できると感じました。ただし、営業活動の場合は、各担当者が利用プロセスや各段階(Stage)の定義を正確に理解し、適時更新することが不可欠です。例えば、Stageの更新が一度に行われる場合や、同一状況でも担当者によって判定が異なる場合、分析の精度が低下する恐れがあるため、その点に留意する必要があります。 全体の改善点は? さらに、Top、Middle、Lowパフォーマー各グループでの離脱状況の違いや、全体で共通して離脱が目立つ段階を把握することで、どの段階に改善の余地があるのか具体的に見極めることができると考えました。

データ・アナリティクス入門

緻密な分析で未来を創る

分析プロセスとは? 分析には、まず問題の明確化、次に原因の特定、さらに原因の分析、そして解決策の策定という段階があることが分かります。 原因の分解はどう? 特に原因の分析では、事象や問題のプロセスを細かく分解して検討することが重要です。また、解決策を策定する際には、複数の選択肢を挙げ、それぞれの根拠を明確にしながら選択肢を絞り込むことが求められます。 A/Bテストはなぜ? その絞り込み手法として、A/Bテストが有効です。ITの進歩により、データ分析やデータ収集が容易になっているため、この手法の重要性と有効性は一層高まっています。 業績分析はどうする? また、会社の業績を分析する際、原因の分析が漠然としがちですが、今後は大まかな項目(売上や利益)から始め、さらに細かい項目(費用の種類など)に分解して考えるプロセスを意識していきたいと考えています。 多案検討はどう? 解決策を検討する際にも、単一の選択肢に偏るのではなく、複数の案を検討できるよう努めたいと思います。現状、所属する立場からは厳しい選択肢に偏りがちですが、今後は関係者に寄り添った柔軟な提案もできるよう意識していきたいです。

データ・アナリティクス入門

原因追究で見えた解決策への道

新たな仮説は何? データをもとに原因(why)をじっくり検討する中で、新たな仮説が浮かび上がったり、これまで見えていなかった点が明確になったりしたことが印象に残りました。 急ぎ過ぎの原因は? しかし、実務では、問題箇所(where)が特定されるとすぐに解決策(how)の検討に移され、根本的な原因究明に十分な時間を割くことができていないと感じます。今回の演習を通じて、原因を十分に特定することが、より効果的な解決策の選択につながることを実感しました。 対処療法の罠は? また、業務上の問題に対しては、個々の対処療法的な措置ばかりに頼るのではなく、同様の問題が再発しないよう、根本的な解決策を検討するためのプロセスをしっかり踏むことが重要だと感じました。 論理展開は順調? 今後は、まず問題原因の深堀(where)を丁寧に行い、whyからhowへと論理的にプロセスを進めることを意識していきたいと思います。

データ・アナリティクス入門

多角的仮説で切り拓く解決策

本当に原因は何? 原因を探る際は、さまざまな角度から仮説を立てることが大切です。フレームワークや対概念を利用し、多くの切り口で検討することで、真の原因に辿り着く可能性が高まります。 何が解決の鍵? 問題解決の際は、すぐに具体的な方法(How)に飛びつかず、まずは何が(What)、どこで(Where)、なぜ(Why)の各段階で十分に仮説を洗い出すことが重要です。このステップを順に踏むことで、より的確な解決策に繋げることができます。 どうして仮説広げる? 実務では、過去の経験に頼って一つの仮説に固執しがちですが、より早く問題解決を図るためには、できるだけ多くの仮説を立てる努力が求められます。日頃からMECE、3C、4P、SWOTなどのフレームワークを意識し、抜け漏れのない思考法を訓練することが有効です。 共有で強化する? また、自分だけでなくチームメンバーとも知識を共有し合うことで、組織全体の力を高め、さらなる成長へとつながります。

データ・アナリティクス入門

振り返りが創る仮説の力

冷静な判断って可能? まず、事象に対して一時的な感情に流されず、前頭葉を働かせて客観的に向き合うことの重要性を実感しました。感情に左右されず、詳細かつ丁寧にプロセスを記述することで、その記述に基づいて仮説を立て、検証する方法が効果的であると理解できました。これらの作業は一見地味で根気を必要としますが、日々の習慣として取り入れることが大切だと感じました。なお、今回初めてA/Bテストの存在を知り、仮説検証の有効なツールとして認識するに至りました。 記録は役に立つ? また、チームで直面する課題や問題に対して、その場の感情で対応してしまう傾向があることも実感しました。しかし、各課題を日々記録し、定期的に振り返る時間を確保することが不可欠だと考えます。振り返りの際は、what、where、why、howの順に整理し、仮説を立てたり、以前の仮説の検証を行うなど、体系的なアプローチを習慣づける必要があると感じました。

人気記事

「仮説と比較で見える成長の軌跡」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right