クリティカルシンキング入門

伝えたい順で魅せるスライド術

伝える順序は大切? 学びの中で、まず伝える順序に着目することの重要性を再認識しました。スライド作成時に、まず何を伝えたいのか、またその根拠としてどのグラフやデータが必要かを意識することで、受け手にとって分かりやすい資料が作れると感じました。さらに、資料全体の色調、書体、イラストなど、視覚的な要素にも工夫を凝らすことで、相手にどう捉えてもらうかを考える機会になりました。 実務での活用はどう? また、学んだ内容は実際の業務にも直結しています。社内の戦略会議や中間報告、トラッキング結果の共有など、社内向けのプレゼン資料作成で活用できることが実感できました。顧客への説明資料においては、製品の伝えたいメッセージや、説得力のあるエビデンスの見せ方に役立っています。 資料見直しの効果は? さらに、カタログや各種資材の作成においては、我々が何を伝えたいのか、そのためにどの情報をどのように見せるかを工夫する上で、大変参考になりました。作成した資料は翌朝に再度見直すことで、伝えたい内容が改めて明確になり、スライド全体を俯瞰して強調すべきポイントやグラフの見やすさを確認する習慣が、資料の質をさらに向上させています。上司や同僚の意見を取り入れることや、資料作成後にロープレで流れや根拠を整然と説明できるか確認するプロセスも、非常に有益な学びとなりました。

クリティカルシンキング入門

伝わる工夫で魅せる資料術

資料の視覚化は? 伝えたい内容は、単なる言葉だけでなく、視覚的に表現することでより効果的に伝わることを実感しました。テキストや色の使い方、資料上での順序、グラフの種類、そしてメッセージとグラフとの関連性など、工夫する要素が多々あります。これらは、単に思いつきで作成するのではなく、受け手を意識して選び抜く必要があると感じました。さらに、資料を作る際は、どの場面で誰に見せるのか、作成の目的を明確にすることが大切です。 部内外の説明は? 自分が所属する部署では、部内外に業務プロセスの改善や新規プロジェクトの導入を説明するとき、過去のデータと現状の推移を図示するなどして、なぜその取り組みが必要なのかを明確に伝えています。こうした手法は、今回学んだ内容を活かすのに非常に役立っています。また、部下の資料チェックを行う際も、相手に伝わりやすい工夫がされているか、ポイントが正確に押さえられているかを意識するように心がけています。 今後の資料作りは? 今後は、資料作成や確認の際、今回の学びがしっかりと反映され、受け手に必要な情報が探さずとも見つかるような工夫がなされているかを常にチェックする習慣を続けたいと思います。また、表やグラフの種類ごとにその効果を最大限に発揮する使い方をさらに学び、より具体的で理解しやすい資料作りに挑戦していきます。

戦略思考入門

未来予測にAIを活かすビジネスフレームワーク活用法

フレームワークの総合的活用法は? フレームワークを用いることで、自分や関係者だけの限られた情報に縛られず、ビジネスにおいて必要な要素を総合的に考えることが求められます。手に入れられるデータは現時点のものに限られ、未来のデータは推測に依存せざるを得ません。しかし、重要なのは未来に基づいた施策であり、この未来に対する包括的な検討方法をどうするかが鍵となるでしょう。 AIはどこまで活用できる? 一般的なビジネスフレームワークは理解しやすく、人間同士の議論には適しているものの、過度に単純化されている部分もあります。現代ではAIの存在があるため、現時点での事実は人間が収集し、チェック、設定する必要がありますが、未来への影響、特に複雑な交互作用の部分はAIにシミュレーションを任せるといった取り組みが求められるでしょう。 AIを用いた未来予測の具体策は? 使い慣れたビジネスフレームワークに基づいてAIに未来を予測させるためのテンプレートを、DifyやExcelで考案しています。すでに「ゴールデンサークル」や「バリュープロポジション」、「ビジネスモデルキャンバス」、そして「機械学習プロジェクトキャンバス」の素案を作るためのテンプレートが存在しています。これらを活用し、交互作用をも含む未来の予測にAIを利用できないか、o1に相談してみます。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

実務で変わるデータの読み方

代表値の意味は? 代表値という概念について、これまであまり意識していなかった部分を学びました。データの種類や求める数値に応じて、平均値や中央値などを使い分け、全体の傾向を大まかに把握する考え方はとても実務的で役立つと感じました。 グラフの使い分けは? また、グラフの見せ方にも新たな発見がありました。これまで円グラフとヒストグラムを感覚的に使い分けていたのですが、なぜ今回のケースでヒストグラムが望ましいのかを言葉にする難しさを実感しました。ヒストグラムはデータのばらつきを視覚的に示すのに適しており、円グラフは各要素の割合を把握する用途に向いているという点で、両者の使い分けが明確になりました。 幾何平均って何? さらに、単純平均や加重平均については知っていたものの、「幾何平均」という概念は初めて知りました。比率や割合で変化するデータに対して、幾何平均の考え方を用いることで平均を算出する手法を、ケーススタディを通じて理解が深まりました。今後、将来予測や予算・売上の見込みを算定する際にも、この考え方は有効に活用できると感じています。 学びの振り返りは? このような抽象的な概念は、理解しているつもりでも実務で繰り返し使用しないと忘れがちであるため、資料作成や報告の際に今回学んだ内容を改めて振り返る時間を設けたいと思います。

データ・アナリティクス入門

問題解決の新たな視点を得る学びの旅

解決へのプロセスをどう進めるか? 今回の講義を通じて、問題解決における「What、Where、Why、How」の各要素に分けて進めることの重要性を再認識しました。特に、平均値を見る際に「ばらつき」という視点が抜け落ちやすいことに気づけたことは大きな収穫です。ばらつきを確認することで、新たな気づきや次の問いに繋がることがあるため、これを自身の思考の癖として意識的に取り入れていきたいと思います。 データ分析はどう活用すべき? また、データ分析の活用については、会社業績の分析に役立てていきたいと考えています。各要素をもとにして思考を整理し、比較をギャップとして描き出す際には視覚的にグラフも活用します。さらに、考えの幅を広げるためのフレームワーク(3C・4P)を、幅を広げるだけでなく、様々な場面で応用できるように意識して使うことで、新たな気づきや問いにも繋げていきたいと思います。 比較分析はどのように進化する? 自身の役割としては、バックオフィス化を進めることに加え、会社業績の分析資料の作りこみも進めています。Q2の考えを柱として、基本的な比較においても、前期・前月比以外に施設間比較や競合の数値を集めての比較、さらに売上の分解(ロジックツリー)なども行い、自社のマーケティング施策の検討に繋げていきたいと考えています。

データ・アナリティクス入門

データ分析で見る成長のカギ

比較の重要性って何? 分析の本質は比較にあり、効果を測定するためには、「Aがある場合」と「Aがない場合」を比較することが重要です。ただ「Aがある場合」だけを見ても、その効果を正確に測定することはできません。そのため、分析の目的に沿った適切な比較対象を選定し、分析したい要素以外の条件を整えることが必要です。この考え方を「Apple to Apple」と呼びます。 施策効果の見極め方は? 販促施策の効果を分析する際には、イベントやDM、SNSなどさまざまな方法がありますが、以前はアクションがあった顧客の反響のみを分析していました。今後は施策を行っていない期間の販売実績とも比較し、何をもって目標達成とするかを明確にして企画を立案します。データ分析を行う際には、まず分析の目的やゴールを明らかにし、どの情報を比較すればよいかを検討してから分析を進めなければなりません。 条件整理のポイントは? 「Apple to Apple」の原則に従い、分析対象以外の条件が揃っているかを確認することが重要です。施策を進める際には、データを蓄積するためにさまざまな条件を整えられるように企画します。また、エリア別の顧客属性分析を行う際に、どの比較対象が適切であるかについては、部署に持ち帰って相談し、より明確にすることが推奨されます。

アカウンティング入門

お金で読み解く自社の知られざる価値

お金の視点、どう捉える? 改めて会社内のさまざまな活動を、お金の動きという視点で捉えるという考え方が新鮮で、とても興味深く感じました。社内のデータやその基になる活動を詳しく調べる中で、実は自分たちの会社についてあまり知られていない部分が多いことに気付かされました。今後は、何事においてもお金の流れという側面を意識して理解を深める習慣をつけたいと思います。 事業部比較はなぜ? 現在、複数の事業を展開する自社において、事業部別の事業構造や実態を比較把握するプロジェクトに取り組んでいます。このプロジェクトの内容は、改めて自社の活動をお金の動きの観点から理解するという視点と直結していると感じました。特に、私たちの企業は設備投資をあまり必要としない労働集約型であり、人材が最も重要な資産であることから、その活動を金銭面でも検証してみたいと考えています。 活動はどう検証する? まずは、どのような活動が行われているのかを明確に列挙する必要があります。続いて、それらを体系的に整理し、活動の目的や実態、課題などを明らかにした上で、金銭的な要素も加えていくつもりです。人的資本経営という視点では、誰が誰に対してどのような目的でどんな活動をしているのかをすべて定量化するのは難しいものの、可能な限り数値で表せるよう努めていきたいと思います。

データ・アナリティクス入門

目的意識で未来を切り拓く

学習前の心構えは? まず、学習に入る前に心構えをしっかり持つ時間が取れたことが非常に有意義でした。データ分析の授業でも触れられていた「目的地」の重要性に気づかされ、目的を定めずに学習を進めると、行き当たりばったりになってしまい、自分が本来得たい知識が得られないという現実を改めて実感しました。 分析手段の真意は? また、データ分析は単なる分析そのものが目的ではなく、目的を実現するための手段であり、その手段を用いて仮説を立てることが本質であるという点も認識できました。目的意識を明確に持って初めて、必要なデータの抽出やその後の分析が効果的に行えるのだと理解しました。 売上報告にどう活かす? この学びを、毎月作成している売上の月次レポートに活かしていきたいと考えています。売上報告では、現状の振り返りを通じて得られる情報を整理し発信しています。月ごとに売上は変動し、好調な時もあれば不調な時もあるため、どの要素に着目すべきかを明確にし、良い状態を維持するための具体的な目的を掲げる必要性を感じました。 具体的には、全体の売上維持や増加という大目標に対して、注目すべき項目を検討し、その項目に関連するデータを抽出します。そして、期間中のデータを元に仮説を立て、その仮説をチームに提示するというプロセスを実践していく予定です。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

データ・アナリティクス入門

仮説で突き抜ける分析の世界

分析の基本を確認? この講座では、分析とは単にデータをそのまま受け入れるのではなく、要素を分類し比較する作業であることを学びました。現状を鵜呑みにするのではなく、多角的に考え、目的や仮説を明確に持って取り組む重要性が印象に残りました。 分類と比較の仕方は? 具体的には、まず分析の基本として、データを分類することが必要だと再認識しました。そして、その分類された情報を比較することで、より深い理解が得られると感じました。さらに、明確な目的や仮説を持つことで、分析の取り組み方が一層意識的になり、有益な示唆が得られる可能性が高まると実感しました。 実務での分析戦略は? また、現職の業務においては、クライアント向けのマーケティング戦略を立案する際、膨大なデータの中から適切な視点を見出し、効果的な分析を行うことが求められます。目的や仮説を明確に持ちながら、意識的な比較検証を進めていくことで、売上に貢献できるような分析手法を確立していきたいと考えています。 着眼点を模索中? さらに、与えられたデータのどの部分に着目すべきか、どの分析手法を適用すべきかについては、まだ模索している部分もあります。今後は、理論を学びながら実務に直結する知識やスキルを身につけ、より具体的な分析ができるよう努力していきたいと思います。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

「データ × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right