データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

データ・アナリティクス入門

ナノ単科で見つける解決のヒント

何が問題の始まり? 問題解決には、まず「何が問題か」「どこに問題があるのか」「なぜ問題が生じたのか」「どのように対応するか」というプロセスがあることを学びました。最初に、直面している課題や状況から現状とあるべき姿のギャップを把握し、次に客観的なデータを用いて問題箇所を詳細に特定します。この際、MECEやロジックツリーの手法を用いることで、抜けや重複なく整理することが重要です。さらに、問題の背景にある原因を細かく分解し、真の原因に迫る作業が求められます。最後に、さまざまな案を検討し、現状と理想を照らし合わせながら、適切な対策を導き出していきます。 なぜデータが重複? また、phaseごとに製造原価の算出を実施しており、算出データの取り込みとその活用が行われています。しかし、各phaseで実施している業務自体はほぼ同じ内容でありながら、同一データの取り込みなど、重複して実施している作業が存在しています。理想的には、データベースにphaseごとのデータが一元管理され、必要な時に迅速に利用できる体制が整っているべきです。しかし、現状では必要な時に都度データを作成し、同じ内容を複数回取り込むなど、業務に無駄が生じています。 原因はどう分解? このギャップの原因を明確にするためには、実際の業務フローや工数、業務のインプットとアウトプットの詳細、さらにはシステム上の問題点など、ファクトに基づいた確認が不可欠です。定量的なデータを捉えた上で仮説を立て、MECEやロジックツリーといった手法を活用して問題点を細かく洗い出します。こうした手法により、データの切り口を複数持ち、各要素の影響度を把握してプライオリティを付け、効率的に問題解決へと導くことができます。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

クリティカルシンキング入門

試行錯誤から生まれた分析の智恵

データ加工の秘訣は? データの加工においては、分布の見え方が刻み幅によって大きく変わることを実感しました。一部の刻みやすい部分だけに頼らず、あらかじめ仮説を立てた上で様々な試行錯誤を行いながら加工することが重要だと感じています。また、加工結果を伝える際には、グラフなど視覚的な資料を用いて相手の注意を引く工夫が必要だと学びました。さらに、MECEの手法として、層別、変数、プロセス分解という大きく3つの方法があることも新たな発見でした。 プラン策定の視点は? ビジネスプランの策定にあたっては、まず対象期間を明確に定義し、その期間内に成長する領域をあらゆる角度からMECEの観点で分解することが効果的だと考えます。仮説を基に分析を進めると、具体的なポイントが見えてくるでしょう。特に、層別の分解では、単に分かりやすい切り口を選ぶのではなく、意図を持った切り口にすることで、伝えたい内容をより明確に伝えることができ、相手に納得してもらいやすくなります。また、会社から得られる数字だけに頼らず、必要な要素を漏らさず情報を収集する姿勢も重要だと感じました。 レポート作成の狙いは? 日々のレポート作成や本質を押さえたアクションを行う際には、まず要素を思い描き、書き出すこと。そして、分解し、他の切り口がないかを常に考え直すことで、ポイントを簡潔かつ分かりやすく伝えることができると実感しました。 工夫の実践例は? 加工や切り口の工夫は、経験や場数、センスが求められるものです。実際の業務でどのように活かされているのか、または自分自身や家族における意思決定の場面で役立っている事例についても知ることができれば、さらなる学びにつながると感じています。

クリティカルシンキング入門

今日の気づきが未来を創る

グラフはどう選ぶ? グラフ作成にあたっては、伝えたい内容に応じて適切な様式のグラフを選ぶことが基本です。伝えたいメッセージに合わせた数字を用い、分かりやすく誤解のない表現をするため、特にY軸のスケール設定に注意する必要があります。 文字装飾の秘訣は? 文字の装飾については、シンプルさを心掛けます。伝えたい要素に応じて適切なフォントや色を選択し、アイコンは視認性を損なわないものを使用することで、情報の見せ方全体が整います。 情報提示の工夫は? また、情報を提示する際は、単なる事実の羅列にとどまらず、メッセージ性を加えることが大切です。受け手に情報を探させることなく、視線の流れを誘導しながら、強調すべき点を的確に示す工夫が求められます。メッセージとグラフや表の内容に整合性があるかを再確認することも忘れてはなりません。 データ発信の要点は? 例えば、収支や収益、材料費、患者数といった様々なデータを定期的に発信する際、このような視覚化の工夫が大いに活かされます。事実の単なる提示に留まらず、具体的なメッセージを含めることで、経営情報だけではなく学術的な発表の場においても、受け手にとって分かりやすい資料となります。 伝え方はどうする? データ分析の結果を職員に提示する場合、棒グラフや折れ線グラフなどの基本的なグラフの種類やY軸のスケールの適正さを見直すことから始めましょう。グラフのタイトルにはシンプルでありながらもメッセージ性を加え、情報を詰め込みすぎないよう注意が必要です。また、伝えたい内容に合わせた適切なフォント、色、装飾を選ぶとともに、装飾はシンプルに留め、スライド上で受け手が情報を探す手間を省く工夫をすることが求められます。

クリティカルシンキング入門

見れば納得!視覚化の魔法

視覚化の効果は? 伝えたいメッセージを効率的かつ正確に伝えるため、視覚化のポイントについて学びました。図、表、グラフを活用することで、受け手が眼で情報を確認し、二次元的に処理できる点が理解促進につながると実感しました。 グラフの見せ方は? 具体的には、グラフを効果的に使い、見せ方にも工夫を加えることで全体の流れとメッセージの整合性を図る方法を学びました。スライドでは、相手に情報を探させることなく、流れに沿って情報を提示できるよう心がけることが大切だと感じました。また、グラフは全体像の把握に役立つように配置し、時系列データなどは折れ線グラフ、異なる要素を示す場合は横棒グラフを使用するなど、状況に応じた種類の使い分けが有効です。 グラフ統合は可能? さらに、例えばX軸が共通のグラフが2つ必要な場合には、Y軸を左右に分けて折れ線グラフと棒グラフを1つにまとめるという手法も有用です。タイトルや単位の明示、フォントや色の使い分け、斜体・下線・太文字などを適切に活用することで、伝えたいメッセージに合わせた表現が可能となります。装飾も必要性を考慮し、過剰にならないようバランスを取りながら資料作成に取り組むことが求められます。 情報伝達はどう? これらの視覚化テクニックは、経営会議や上位への発信資料にも大変役立ちます。受け手が持つ情報との違いを考慮し、短い時間で効率的にメッセージを伝え、相手に理解してもらうために、今回学んだポイントを資料に盛り込むことが重要です。 伝わる資料とは? 最終的に、読み手の立場に立って資料を構成し、情報の配置や流れを工夫することで、本当に伝えたい内容が正しく伝わる資料作成を目指していきたいと感じました。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

マーケティング入門

直感とデータで挑む戦略の未来

自社の強みはどう活かす? ある企業の事例と富士フィルムの事例から、自社の既存の強みをいかにターゲットに届けるかというマーケティング手法の有効性を学びました。他社のサービスをどの程度意識し、意思決定に反映するかも重要なポイントです。機能比較のためにまるばつ表を作成し、改善点を洗い出す手法には一定の効果があると感じる一方、プロダクトの機能が他社と類似し、手数料による差別化が進むケースもあるため、実行のスピード感も求められていると実感しました。 どの軸で攻める? 経営層の直感的な意思決定によって各種プロダクトが立ち上がり、顧客層が中小企業向けから大企業向けに拡大する中で、今後どの軸で攻めるかを議論する段階にあると感じています。プロモーション手法に先立ち、まずは各プロダクトがどの伸び代に位置しているかを明確にし、戦略を立案することが最優先事項だと思います。経営陣へのインプットも含め、各種マーケティングフレームワークを用いて、伸び代の定義やデータ分析の結果を踏まえた戦略作りを進める必要があります。 戦略検証はどう進む? また、既存顧客の属性をデータで分析し、ユーザーインタビューなどを通じた現プロダクトの価値検証によるメンタルモデルの分析が欠かせません。海外サービスを視野に入れた競合分析やポジションマップの作成、事業戦略とのストーリーラインの接続、さらに市場規模(TAM、SAM、SOM)の試算など、各種分析を通して具体的な全体戦略を描くべきだと考えています。加えて、既知の要望の深掘りをプロダクトロードマップに反映するとともに、エンジニアとの密なコミュニケーションや開発リソース確保のための内部稟議も重要な要素となると感じました。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。
AIコーチング導線バナー

「データ × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right