データ・アナリティクス入門

平均を極めるデータ思考

どの平均値を選ぶ? どのような状況でどの平均値を使うべきかについて学ぶことができ、非常に有益でした。今まではさまざまな種類の平均値を扱ってきましたが、加重平均や幾何平均を利用する理由については深く考えたことがありませんでした。今後は、背景にある意図を意識し、何のため、なぜその平均値を選ぶのかを明確に捉えたいと思います。また、より適切な平均値を選択できるよう努めたいと考えています。 データの見方は? 一方、データ分析においては定性分析の要素が多いことから、平均値を用いる際にはデータの読み解きに十分な注意が必要です。業務に活かすためには、どの視点からデータを捉えるか、そして他の視点が存在しないかを検討することが大切だと感じました。

戦略思考入門

捨てる勇気で見える新たな学び

どんな視点で判断? 戦略的に「捨てる」という意識を持つことが重要です。その判断を行う際には、すぐに手に入る目の前のデータだけでなく、見えていない部分も様々な視点から評価し、目的に照らして判断する必要があると感じました。既存のやり方や慣れを疑うことも、大切なポイントです。 人的作業の見直しは? また、人的作業の見直しやシステムの導入を考えるとき、この「捨てる」という選択は非常に有効だと感じました。作業が本当に必要なのか、なぜ必要なのかをしっかりと考え、必要な要素を洗い出すことで、これまでのルールを一度手放して新たに構成し直す決断を実践していきたいと思います。

戦略思考入門

やさしく学ぶ経済性のヒント

どの経済性が重要? コスト低減のためには、「規模の経済性」「習熟効果」「範囲の経済性」「ネットワークの経済性」を理解することが重要です。現状のデータを正確に把握するとともに、外部要因も考慮し、どの要素を活かせるかを見極める必要があると学びました。 属人依存を解消? また、規模の経済性と範囲の経済性については、これまでの製造業での取り組みでも実践してきた内容です。一方で、習熟効果の背景には、特定の個人に依存するリスクが潜んでいると感じています。そのため、属人化の問題を解消するために標準化を進め、習熟効果を効果的に引き出す対策が求められると思います。

クリティカルシンキング入門

問いの力で見える解決のヒント

解くべき本質は? 今回のケースでは、分析に入る前に「本当に何が解くべき問題か」を明確に設定することの重要性を学びました。データをただ眺めるのではなく、目的や意思決定につながる問いを先に定めることで、分析の無駄が省かれ、その結果、解決策の質が向上することを実感しました。 業務改善の鍵は? 自分の業務でも、売上分析やCRM施策を検討する際、まず「何を解くべきか」を明確にする必要性を感じました。表面的な数字を見るだけでなく、「原因をどの要素に求めるか」という視点でイシューを設定することで、分析の効率が上がり、改善策も的確になると実感しています。

データ・アナリティクス入門

多角視点で捉えるデータの魅力

データ理解の原点は? 今週は、データの理解を出発点とする学習に取り組みました。データとは、ひとつの側面だけでなく多角的に捉えるべきものであり、個人的な偏りを排して客観的に扱う難しさがあると感じました。 判断の落とし穴は? また、データそのものの意味を正確に把握することと同様に、データを活用する目的を明確にすることも非常に重要だと思いました。迅速かつ効率的な業務が求められる場面では、あまりにも素早く判断しようとすると、過去の経験や似た事例に頼りがちになり、その結果、重要な要素を見落としてしまうリスクがあると実感しました。
AIコーチング導線バナー

「データ × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right