クリティカルシンキング入門

MECEで探る増収減益の謎

基本理解の鍵は? MECEの基本的な考え方を理解できたことが良かったです。特に、基本となる3つの分け方についても学び、多くの知見を得ることができました。 増収減益の原因は? 現状の課題は増収減益です。原価上昇に対して売価設定が追いついていないのか、リカバリーにかかる費用が過剰なのか、またはお客様の要望が厳しく対応が後手に回っているのかなど、各フェーズで様々な視点から原因を探っていきたいと考えています。 数字分解の要点は? 今ある数字を分解するときは、MECEを意識することが重要だと感じました。このロジックを繰り返し行い、確実に身に着けるためには反復が必要です。 改善策の展望は? 来週の営業会議では、増収減益の原因を分析し、改善策を提示する予定です。そのため、今週中に必要なデータを整え、土日に詳細な分析を行い、週の前半には問題の特定と改善策の検討を済ませたいと思います。

データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

クリティカルシンキング入門

イシューで問題解決の道筋を明確に!

問いはどう考える? まず、重要なのは問い(イシュー)を立てることです。この問いは具体的であり、疑問文の形であるべきです。常に問いを考え続けることが求められます。たとえば、南守島のケースでは、データを様々な切り口で分析し、課題を特定し、その解決策を出すという一連の流れを理解しました。 イシューをどう整理する? 議論が多岐にわたると、イシューを見失うことがあります。そのため、一貫してイシューを意識するのが重要です。議事録のヘッダーにイシューを入れることで、会議の開始時にメンバー全員で確認し、共通の認識を持つように心がけると良いでしょう。 会議はなぜ確認する? 会議の最初には、イシューを全員で確認します。また、議論が逸れた場合には、軌道修正のために再度イシューを確認することが必要です。イシューが複数ある場合には、それを構造的に分解し、それぞれ個別に議論する場を設けると効果的です。

データ・アナリティクス入門

賃貸営業に役立つロジカル思考の実践

ステップ思考で目標達成? これまで漠然と進めていたことについて、「What」「Where」「Why」「How」というステップで考えることで、目標に早く到達できると感じました。また、ロジックツリーを用いて、もれなく重複なく(MECE)の分析方法を学びました。しかし、頭で理解するだけでなく、やはり実践を通じた訓練が必要だとも感じました。 業務データ活用の重要性 私は賃貸住宅の入居者募集業務を担当しています。物件データや毎月の入居者・退去者のデータをもとに、どのような傾向があるのかを見極め、売上や利益を伸ばすための営業戦略に応用できそうです。 視覚化で理論を実践? さらに、ロジックツリーやMECEについても、理論の理解だけでなく、実際に手を動かして試してみることが重要だと感じました。日常業務の様々な場面で、可能な限り図や文字を用いて視覚化し、訓練して習得していきたいと思います。

データ・アナリティクス入門

比較で見える戦略策定の極意

データ分析の重要性を再確認 「分析は比較」という考え方は、実務において非常に重要であると実感しています。単にデータを集計するだけでは、判断材料とはなりません。そのため、比較や判断が可能な形での分析を常に心掛けています。今回の講義でも、この視点の重要性を再確認しました。 数値比較で客観性を持たせるには? 事業戦略を策定する際には、過去の実績などの比較数値を用いることで、客観的な判断が可能になります。また、「Apple to Apple」の話が示すように、比較する対象を明確にし、条件が一定であることを確保することで、適切な結論を導き出せると考えます。 チームで共有すべき比較意識 さらに、戦略書やプレゼン資料を作成する場合、目的をもって適切な比較対象を用いることで、説得力を高めることが重要です。チームメンバーにもこの意識を共有し、齟齬なく業務を進められるよう努めています。

データ・アナリティクス入門

データで見つける学びの宝箱

傾向分析はどう見る? データがある場合は、まず全体の傾向やばらつきを確認し、平均値、中央値、最頻値といった代表値を踏まえて分析することが重要です。どのような視点で何を見たいのかによって、適切なグラフの種類を選定する必要があります。 データ不足はどう対策? 一方で、データが不足している場合は、必要なデータを自ら収集することが求められます。その際、どのようなデータがあればよいのかをあらかじめ仮説として立て、計画的にデータ収集を進めることが不可欠です。 グラフ説明はどう伝える? また、データ分析後には、結果を他人にわかりやすく伝えるためのグラフ化や説明方法についても十分に検討することが大切です。円グラフ、棒グラフ、ヒストグラムなど、見やすいグラフの具体例に着目し、どの視点からそのグラフが作られたのかを理解し、効果的な表現方法を真似ることで、説明力を高めていきたいと考えています。

データ・アナリティクス入門

4Pの視点で切り開く明日の戦略

なぜ4Pで仮説を立てるの? 4Pの視点から仮説を立てる方法について、これまで十分に実践できていなかったため、改めて基本に立ち返り内容を確認しながら取り組みました。その結果、4Pの視点が非常にやりやすいことを実感し、今後は意識的に活用していきたいと感じました。 なぜ多角的に見るの? また、コンサルティングの現場では、契約状況の因果関係を把握する際に4Pの視点で多角的に分析する必要性を改めて認識しました。リサーチャー時代から苦手としていたこの分野ですが、今後は意識して幅広い視野を持ちながら仮説を構築していきたいと思います。 どうして数値を読むの? さらに、数値データを分析する際は、単に事実を確認するだけでなく、背後にある事象を踏まえて仮説を立て、物事の判断につなげることが重要だと実感しました。3Cや4Pの視点を常に意識し、分析を通じた課題解決の思考力を養っていきたいです。

データ・アナリティクス入門

5視点で探る仮説と分析の力

分析はどう始まる? 分析は比較から始まるという考え方と、問い・仮説設定・検証というサイクルが実務に合致する点に強く共感しました。また、インパクト、ギャップ、トレンド、ばらつき、パターンの5つの視点をすべて捉えることで、初めて価値ある情報が得られるという認識が深まりました。 変化と課題は何? 先週と大きなテーマの変化はなく、内容自体も大きく変わりませんが、5つの視点を活かし、業務でのアウトプットが比較によって生み出される価値に繋がると考えています。一方で、分析を活用する際の課題として、仮説検証のサイクルの速さや仮説の精度が挙げられます。特に、データ分析の初動を誤らないことが、仮説の精度を高める上で重要だと感じました。 仮説の壁をどう乗る? また、「仮説を立てることが難しい」との声をよく耳にします。皆さまはどのような方法で仮説を構築されているのか、ぜひ知りたいと思います。

データ・アナリティクス入門

グラフが語る数字のドラマ

なぜ数値だけでは足りない? データの羅列だけで比較しても、各数値間のギャップを明確に示すことは難しいと感じました。そこで、統計的手法に沿い、平均値だけでなく最大値、最小値、中央値、最頻値など複数の数値を用いることで、データのばらつきをより具体的に把握できることに気付きました。また、こうした整えた数値データをグラフで視覚化することで、全体の傾向がより分かりやすくなると実感しました。 定性情報はどれほど重要? 実務上の変化を的確に捉えるためには、数値データと併せて定性情報のリサーチが不可欠です。これまでは、物量の精査や曜日ごとの波動を捉える際に平均値や中央値を多用していましたが、異常なオーダーも含めた数値をそのまま資料に取りまとめると、全体の概況が見えにくくなる可能性があります。今後は、日々の実績をもとに異常値を定義した上で、データの加工と分析に取り組んでいきたいと考えています。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

データ・アナリティクス入門

ロジックの先に見えた未来

MECEの意義は? 問題解決の過程でロジックツリーを活用する中、MECEの考え方が重要だと改めて実感しました。MECEとは、ある事象を「モレなくダブリなく」整理する手法ですが、その「モレなくダブリなく」を必ずしも厳密に適用するのではなく、切り口の感度を重視することが肝要だと感じました。 分類の工夫は? また、分類の際に「その他」を使う場合や、意味のある切り分け方のポイントについても再確認できました。こうした知見を基に、今後も状況に応じた最適なロジックツリーの構築に努めたいと思います。 ギャップ解消の策は? さらに、業務では常に計画とのギャップに注目し、数字や傾向を正確に掴む必要があります。現状の進め方が本当に正しいのか、ありたい姿に対して適切かどうかを再検証し、長期的な視野に立ってデータを分析しながら、ギャップ解消に向けたアクションにつなげていきたいと考えています。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。
AIコーチング導線バナー

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right