データ・アナリティクス入門

比較の技術が未来を変える

比較技術はどう? 分析において「比較」という考え方が、どのような状況下でも基本となると強く感じました。評価が難しい内容についても、適切な比較を行えば納得のいく結果が得られる点が興味深く、あらゆるシーンで適切に比較を行う技術を身につけることが今後の課題だと思います。 過去データの活用は? また、スケジュールの計画や見積もり作成時に過去のデータを参考にすることはしていましたが、複数のデータや各プロジェクトの特性を考慮する視点が不足しており、根拠が十分でなかった側面がありました。今後は、複数のプロジェクト実績や見積もりを比較検討することで、より説得力のある提案が行えるよう努めたいと思います。

クリティカルシンキング入門

相手目線で磨く説得力

なぜ準備が必要なの? 相手の立場に立ち、気になるポイントをあらかじめ把握することで、仕事やプレゼンテーションがスムーズに進むと感じています。これは、一朝一夕で身につく能力ではなく、日々の訓練と意識が必要です。 数字は何を示す? たとえば、財務分析や売上分析の依頼においては、与えられた情報から何が導き出せるかを、データと論理的思考を組み合わせながら考えます。その結果、上長やマネジメント層に対して、より説得力のある報告が可能となります。 意識はどう成果に影響? 簡単な課題ではありませんが、日々意識を高く保つことで自然にスキルは身につき、大きな成果につながると実感しています。

クリティカルシンキング入門

MECE思考で拓く数値の新視点

数字データ整理は? 数字データを分解し、表やグラフなどで見やすく整理すると、情報の捉え方が変わり、違った視点から理解できることに気づきました。情報を整える際は、もれなくダブりなく整理するためにMECEを意識し、層別、変数、プロセスといった切り口で分類することが大切だと実感しています。 事業所データの見方は? また、仕事で各事業所ごとのデータを扱うにあたり、階層別、用途別、期間別といった観点からMECEに基づいて分類することが、傾向の管理や分析に役立っています。数字データを表にまとめ、グラフ化することで、より見やすく、伝えやすい形に加工する工夫が重要だと感じました。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

データ・アナリティクス入門

分析で気づく新たな視点: データ比較の重要性

データ分析での思考法とは? 「分析は比較なり」という言葉が印象的でした。これまで、データ分析といえばすぐに数値を操作してパーセンテージを計算し、グラフを作成することだと思い込んでいました。ですが、何より思考の部分が重要であることを教えてもらい、とても参考になりました。 オープンデータの課題はどう洗い出す? 現在、私は行政のオープンデータから課題を洗い出す仕事に取り組んでいます。規模が大きいデータを前にして、どこから手を付ければよいのか途方に暮れることもありました。しかし「まずは比較」のアプローチを念頭に置き、データを俯瞰して眺めることを実践してみようと思います。

データ・アナリティクス入門

平均だけじゃ見えない数値の物語

平均と標準偏差は何が違う? 普段の業務で平均値はよく目にするものの、標準偏差にはあまり注目していませんでした。しかし、データの比較が分析の基本であると意識する中で、単に単純平均だけで比較するのではなく、その比較自体に意味があるかどうかを検討し、適切な指標を選ぶべきだと考えるようになりました。 背景にある要因を探る? また、私の業界では他エリアでの優れた事例を自地域に取り入れることが一般的です。その際、来客数や平均単価といった数値に注目する場面が多いですが、単なる数値の比較に留まらず、背景にある要因について仮説を立て、深く考察する姿勢が重要だと感じています。

クリティカルシンキング入門

数字で読み解く未来への気づき

どんな切り口が有効? データはそのままでは価値を見いだすことができません。まずは全体像を把握し、いくつもの切り口から分解することで、グラフ化するなどして視覚的に整理してみる必要があると感じます。その上で、どういった単位で分解すればより意味のある情報になるのか、仮説を立てながら試行錯誤していくことが重要です。 数字で見直しは? また、これまで経験則で行ってきた業務を、数字という具体的な形で捉え直すことで、いくつかの切り口から再度分析する機会が得られると思います。そうすることで、新たな気づきが生まれ、業務の質の向上や効率化につながる可能性を感じました。

データ・アナリティクス入門

データが語る平均の真実

平均計算のアプローチは? 平均の取り方やデータのばらつきを様々な方法で検証することで、より正確な分析が可能になると実感しました。ビジネスにおいて平均値が用いられる場合も、その計算方法や元となるデータの内容をしっかり確認する必要があると考えています。 データ集計の工夫は? また、ERP導入時に用いられるデータ集計機能について、顧客と集計方法を決定する際に今回学んだ考え方が非常に参考になると思いました。さらに、見積提示の際に平均工数を算出する必要がある場合、要件によって結果にばらつきが出るため、算出方法を工夫しながら検討する必要があると感じています。

データ・アナリティクス入門

目的と仮説で拓くEC成功ストーリー

目的は明確? 私は自社ECサイトの制作に携わっており、グーグルアナリティクスやその他のアクセス解析ツールを用いて分析を行う機会があります。その際、まず目的と仮説を明確にし、データに向き合う前に自分自身やチームメンバーと共有することが重要であると実感しています。 分析報告は納得? また、分析結果を報告する際にも、目的や仮説を伝えるように心がけています。これまでデータそのものとそこから読み取れる情報、そしてそれに基づく提案を中心に報告していましたが、仮説も合わせて示すことで、第三者にとってより理解しやすく納得のいく内容になることに気づきました。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

戦略思考入門

選択の極意:数値で裏付ける挑戦

戦略の選択方法は? WEEK4では「戦略における選択(捨てる)を身につける」というテーマを通して、選択する際には定量的なデータの分析が不可欠であることを学びました。同様に、WEEK5では数値化によって物事を可視化する手法を学び、定量化の重要性を再確認することができました。 新製品策の評価は? 現在の職場では、従来の製品とは異なる新しい製品の開発が求められています。新たな取り組みでは、多くの改善策や施策が立案されますが、その効果を数値で評価することで、結果が低いものを排除し、優先順位を明確にして着実に実行していきたいと考えています。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right