データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。

データ・アナリティクス入門

目的達成!データの活かし方

データの活用法は? データを見ると、低い指標や原因そのものは一目で把握できるものの、その背景や改善策を考えるのが難しいと実感しました。データ分析自体は非常に重要ですが、それはあくまで目的達成のための手段であると感じています。今後は、どのように目的達成に向けて効果的に活用すべきかを学び、スキルを磨いていきたいと思います。 離職率改善と顧客獲得は? 離職率の低下を目指す際には、原因の調査とその対策、また迅速な対応策の立案に今回の学びが大いに役立つと感じています。また、新規顧客の獲得においても、既存顧客が魅力に感じるポイントや、プレゼンテーション時の評価に注目し、その分析から得られた知見をリード獲得の改善に活かすことができると考えています。

クリティカルシンキング入門

データが語る学びのワクワク発見

どう切り口を見極める? 数字の分析において、与えられた情報をそのまま受け取るのではなく、細かく分解し、どの切り口が有効であるかを見極める重要性を再認識しました。複数の視点でデータを分解すると、異なる結果が導かれることが印象に残っており、分析の際にはMECE(漏れなく、重複なく)を意識することが大切だと感じました。 実務はどう評価する? 実際の業務では、データ分析を行う機会は少ないものの、マーケターの提案内容を確認する際には、情報を細分化し、複数の切り口で評価する手法を取り入れています。また、トラブル対応においても、確認すべき事項がMECEになっているかを念頭に置きながら進めることで、より確実な対策を講じることができると考えています。

データ・アナリティクス入門

比較が導く成長のヒント

比較の本質を問う? 分析の基本は「比較」にあると認識しました。以前は、予算と実績や先月と今月、さらには異なるセグメント同士の比較を無意識に行っていたものの、本質的な意味を正しく理解していたとは言い難いと気づきました。今後は、比較する対象を明確にし、その結果として目的が達成できることを確実に担保しながら進めたいと感じています。 どの比較が課題解決? また、実務においても、目標との比較やその内訳の分解を行う機会は非常に多いです。単にデータを提示するのではなく、何を比較すれば課題改善に向けて一歩前進できるのかをはっきりさせながら進めることが重要です。さもなければ、データを示すだけで満足してしまい、何も判断できない状態に陥る恐れがあります。

クリティカルシンキング入門

工夫で見える成長の一歩

なぜ表現が変わる? 同じデータを用いても、表現方法によって情報の伝わり方が大きく変わることを学びました。グラフや表は単に数多くあれば良いわけではなく、その組み合わせによって印象が変わるため、より工夫が必要だと感じました。 資料改善はどうする? また、毎月の財務分析や売上分析の際には、上長への報告用に資料を作成しています。これまで引き継いだ資料をそのまま使っていましたが、もっと見やすく、伝わりやすい表現方法を工夫することで、将来的な業務効率の向上につなげたいと考えています。 エクセル技能は向上? なお、個人的なエクセルでのグラフ作成にまだ慣れていないため、今後さらに学び直し、スキルを向上させる必要があると実感しています。

データ・アナリティクス入門

エクセルで紐解く学びのヒント

どんな分析で進める? これまでの業務で、約100名を対象とした分析を行う機会がありました。エクセルを用いたビジュアル化が簡単にできるため、基本的には中央値と標準偏差を中心にデータの分布を確認していました。しかし、平均値など他の代表値も併せて計算し、データ全体を多角的に眺めた上で仮説を立て、分析を進めるフローが重要だと感じています。 どう観察すれば精度? また、サンプル数が少ない場合であっても決めつけず、平均値などを算出してデータをしっかりと観察することで、より精度の高い分析が可能になると考えています。このようなフローを週に1回以上実施し、標準偏差などの統計値は適宜AIに質問したり、エクセルの関数を活用するなどして算出しています。

データ・アナリティクス入門

平均を極めるデータ思考

どの平均値を選ぶ? どのような状況でどの平均値を使うべきかについて学ぶことができ、非常に有益でした。今まではさまざまな種類の平均値を扱ってきましたが、加重平均や幾何平均を利用する理由については深く考えたことがありませんでした。今後は、背景にある意図を意識し、何のため、なぜその平均値を選ぶのかを明確に捉えたいと思います。また、より適切な平均値を選択できるよう努めたいと考えています。 データの見方は? 一方、データ分析においては定性分析の要素が多いことから、平均値を用いる際にはデータの読み解きに十分な注意が必要です。業務に活かすためには、どの視点からデータを捉えるか、そして他の視点が存在しないかを検討することが大切だと感じました。

データ・アナリティクス入門

納得を呼ぶ仮説とデータの魔法

仮説の種類は何? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があると学びました。また、複数の仮説を立てることや、各仮説が網羅的にカバーされているかを確認する点がポイントとして挙げられています。 どんなデータが大切? さらに、分析や資料作成の際には、比較するためのデータ収集を行い、反論を排除する情報にまで踏み込むことが重要です。自分に都合の良いデータだけを集めるのではなく、あらゆる角度から納得感のある結論に導くために、仮説を立証するためのデータ収集と加工を繰り返すプロセスが必要だと感じました。また、報告や資料作成の際には、意識的に反論者の視点を取り入れることで、より説得力のある分析ができるようになると確信しています。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

データ・アナリティクス入門

問題解決に挑むロジックの魔法

基本プロセスは何? 今回の学びは、問題解決の基本プロセスを理解する良い機会となりました。特に「何が」「どこで」「なぜ」「どうする」という一連のステップが欠かせないことを改めて認識し、ロジックツリーを用いた「階層別分解」や「変数分解」の手法についても詳しく学びました。また、MECEという考え方は初めて耳にし、図解により抜け・もれ・ダブりの問題が明瞭に整理される様子から、理解が一層深まりました。 分析で気づいた点は? 実際の業務においては、退職増加に関する分析を進める中で、抜け漏れの存在に気付くことができました。限られたデータの中から問題の全体像を捉えるため、今後は抜けている部分に対して階層分析を実施する予定です。

データ・アナリティクス入門

既成概念を超えた発想のヒント

柔軟な発想って何? 既存の考えにとらわれず、引き出しを増やすことが仮説を立てる上で非常に重要だと感じました。 仮説の枠組みは? 3C分析や4Pの概念は耳にしたことがありましたが、実際に仮説を立てる際には意識できていなかったと気付きました。そのため、いきなり案を考えるのではなく、まずどのように考えるべきかを整理する必要性を実感しました。 どう顧客に寄り添う? また、離職者を減らすアプローチや、顧客の課題分析の際に、改めて3Cや4Pの考え方を取り入れる意欲が湧きました。さらに、顧客が自社の分析に必要なデータの種類や、適切な集計方法を提案する際にも、この視点を応用していきたいと思います。

クリティカルシンキング入門

グラフでひらく、学びの新視点

データ分解の意義は? データを分解することで、新たな視点を得ることの重要性を学びました。特に、グラフを活用することで情報を直感的に整理でき、表だけでは気づきにくい傾向や変化を視覚的に捉えやすくなる点が印象的でした。このため、分析や説明の作業がよりスムーズになると実感しています。 業務応用のポイントは? また、日々の業務で社内のイベント実績やアンケート結果の集計・分析を行う際、今回学んだグラフの効果的な使い方や論理的な整理手法を活かせると感じています。視覚的に参加状況や満足度の傾向を示すことで、関係者への報告は説得力を増し、次回のイベントへの改善提案もより具体的に行えるようになるでしょう。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right