データ・アナリティクス入門

見えない価値を探る学びの場

目に見えぬリスクを感じる? 既に目に見える情報だけでなく、目に見えない要素にも着目する大切さを学びました。たとえば、帰還していない飛行機の状況を考えることで、現状からだけではなく、潜在的なリスクや可能性についても想像する力が養われると感じました。また、出版される経営に関する本は、その裏付けとして成功しているという実績があることに共感を覚えました。 数字に秘めた戦略は? 一方、私の業務は既存のデータをまとめ、数字や報告資料に反映させるという作業が中心です。そのため、現時点ではこの学びが直接的に業務に活かせるとは感じられていません。しかし、今後、毎月提出する経営会議用の資料に予測や分析を加えることで、より深い洞察が業務の判断材料になり得ると考えています。特に、条件を比較しながら推測を行うことで、より実践的な分析が可能になると期待しています。

データ・アナリティクス入門

数値に潜む、ばらつきの真実

平均とばらつきの真実は? 代表値とばらつきをデータ活用する際に考慮すべきポイントについて、理解が深まりました。データを読み解く際、まず平均値に頼りがちですが、大量のデータの場合、単純平均ではばらつきの影響が大きくなる可能性があるため、中央値や加重平均、標準偏差の重要性を再認識できました。また、目的に沿ったグラフの選び方についても、これまで十分に把握できていなかったため、ケースに応じた適切なグラフ選択の大切さを学びました。 地域差はどう捉える? 売上分析においては、前年比を合わせたり、特定企業の店舗別売上を確認して地域差を検討するなど、さまざまな視点でデータを活用できると感じました。特に地域差に関しては、ばらつきが出やすい要素であるため、標準偏差や代表値、ばらつきを意識しながらデータ作成や分析を進めていくことが重要だと思いました。

データ・アナリティクス入門

実践で変える!問題解決の第一歩

試す手法は何だろう? 問題の要因がある程度明確になったら、試しやすい手法で課題解決に向けた取り組みを実際に試すことが重要です。たとえば、既存の手法と定量的に比較できるA/Bテストのような方法を設計し、実践することが望まれます。 改善はどう実現する? また、課題の分析だけで満足せず、実際に改善を施して目的を実現することが肝要です。データ分析を行う際には、最終的に何を実現したいのかという目的を常に念頭に置く必要があります。 仮説はどう組み立てる? 一方、データ分析の手法に囚われ過ぎると、単にデータを出すことに多くの時間がかかり、問題解決に辿り着かない恐れがあります。したがって、まずは問題の要因を特定し、その後、有識者とのディスカッションや壁打ちを通じて、改善のための仮説を迅速に立案・実行できるように取り組むことが大切です。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

データ・アナリティクス入門

分析で見つけるビジネス成長の鍵

明確な分析目的を設定するには? 分析を行う目的を明確にし、必要なデータを適切に特定する重要性を再確認しました。指示する側とされる側の間で、作業前に前提条件にずれがないか確認する必要性も理解しました。このプロセスは、KPI設定や検証の際にも当てはまります。設定した目標が会社の方針と一致しているか、常に確認することが求められます。次回の対策を考えるためには、分析に必要なデータにズレがないかを検証し、そのデータが本当に有効かどうかを追求します。 ターゲットの再選定は必要? また、会社としてターゲットをどこに設定するかを再選定する必要があります。現在の顧客の業種別売上傾向やエリア別売上を詳細に分析し、各エリアの特性や注力すべき業種を見極めます。また、機会損失が発生している箇所を特定し、適切な対策を講じることが求められます。

データ・アナリティクス入門

データで解く3Cの秘密

3C/4Pの意義は? 別講座で学んだ3C/4Pといった基本的なフレームワークが、さまざまな場面で十分に活用できることを実感しました。まず、データをざっくりと切り出してから眺めることで、課題をもとに仮説立案がしやすくなる点が非常に有効であると学びました。また、3Cに関しては、多少の変形を加えて3つの象限を定義することが重要だと感じています。 仮説はどう構築する? 対応ケースの増減について仮説を立てる場合には、3Cを変形し、関連する要素に置き換えてデータを俯瞰的に分析する手法が考えられます。その視点としては、C:Customer、C:Contact(ケースをあげる人)、C:Customer Engineer(ケース対応する人)といった切り口でデータを整理することにより、具体的な洞察が得られるのではないかと考えています.

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right