アカウンティング入門

経営指標を使いこなす力を磨く

ケーススタディで何を学んだか? 実際のケーススタディを通じて、P/Lの各項目である営業利益、経常利益、そして当期純利益の増減を比較し、「仮説を立てて検証する」方法を学びました。例えば、「売上高が増えているが売上総利益が減っている理由」として、売上原価の増加という事実を確認し、その原因を推測するプロセスがとても理解しやすかったです。 P/Lを読む際の重要ポイントは? また、P/Lを読む際に重要なポイントも学びました。まず、大きな数字である売上高、営業利益、経常利益、当期純利益を押さえることです。次に、分析においては、比較・対比を通じて傾向の変化や大きな相違点を見つけることが大切です。 どのように過去のP/Lを活用する? 具体的には、自社の過去のP/Lの推移を分析して結果を確認し、今後の予測を立ててみることが重要です。中長期計画を考える際に、これらの分析結果や予測を参考にすることができます。また、同業他社や興味のある会社、業界のP/Lを確認し、好調・不調の推移やその原因を予測することも有益です。 具体的なアクションは何か? 私が取り組むべき具体的アクションとしては、自社のここ数年のP/Lの推移を確認し、今期の予測値について増減の理由を仮説することが挙げられます。同業他社の公開されているP/Lと自社を比較することも重要です。さらに、関連する書籍に掲載されている数社のP/Lを確認し、読み取れることをまとめていきたいと考えています。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

クリティカルシンキング入門

視覚化でメッセージ伝達が変わる!

視覚化の意義は? 伝えるべきメッセージを視覚化するという発想がこれまでなかったため、とても勉強になりました。具体的には、グラフに付けるタイトルや種類の使い分け、フォント、色などが、伝えたいメッセージと一致するかを考慮する点については、これまであまり意識できていませんでした。 各要素はどう繋がる? 視覚化の重要性に気づき、さらに具体的な要素に目を向けられたことは、とても素晴らしいことです。各要素がメッセージとどう結びつくか、さらに深く考えてみると良いと思います。例えば、特定のメッセージを伝えるために効果的なグラフの種類を考えたり、色やフォントがメッセージの受け取り方にどう影響するかを考えてみたりするのは非常に有意義です。 事例で試してみる? また、視覚化を通じてどのように伝えると効果的かを、具体的な事例で試してみる価値があります。日々のKPIのモニタリングや年間業績の振り返り、さらには過去5年の業績の振り返りに役立ちそうです。また、KPIのモニタリング、年間業績の推移、決定単価や決定件数の変化、決定チャンネルの変化などの分析に視覚化を活用することで、メンバーのワークロードの変化についても分析が可能です。 成果はどんな形? このアプローチは特にプロジェクトにおいて、新規求人がどれだけ増加したかを分析する際にも効果的だと思います。視覚化を活用して、これからもより効果的なコミュニケーションを追求していきたいと考えています。

マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

戦略思考入門

実務に活かすフレームワークの力

共通理解はどう育む? 業務を進める中で、同じ目標に向かって取り組んでいても、各人の考え方は様々です。しかし、フレームワークを活用して状況を網羅的に整理し、共通理解を生むステップを踏むことで、有効な進展が得られると感じました。PEST分析や3C分析、バリューチェーン分析、SWOT分析といったフレームワークについては理解していますが、実際の業務ではあまり活用されていませんでした。実務にこれらを取り入れ、さらに理解を深めていきたいと思います。 地域開発で何を分析? 地域事業開発においては、市場ニーズを把握するためにPEST分析を、事業領域やターゲットを定めるために3Cやバリューチェーン分析を活用します。さらに、具体的な案件についてはSWOT分析を用いて自社や環境の整理を進めることができます。例えば、地域での脱炭素事業の開発は重要なテーマですが、国ごとに異なる事業環境を考慮するために、PEST分析を活用して整理が必要です。 案件選択はどう決める? 以前の課題で、事業開発における大きな2つの軸は以下の通りでした。①「点から線、線から面へ、収益の塊を創出すること」②「次期中期計画に向けた2倍成長を実現するための投資実行」です。これらの軸に沿った案件は関係者の共感や納得を得やすいので、この軸に基づいて案件を選択することが重要です。その際、フレームワークを通じて投資実行のストーリーを客観的に描けるよう、整理していきたいと考えています。

クリティカルシンキング入門

数字を切り口にする新発見のコツ

なぜ切り口が大切? 数字を分解して考える際の重要なポイントを学びました。どのように分ければ情報がより明確に見えるか、多くの切り口を持つことが重要です。例えば、年代別に分ける際に、単純に10代、20代、30代という機械的な分け方をしていましたが、18歳や22歳で分けると、高校生や大学生といった具体的な層が見えてきます。また、ある傾向が見えた場合でも、そこで分解を止めずに「本当にそうか?」と疑問を持ち、他の切り口からも考えてみることが重要です。分解して傾向が見えなくても、別の視点で再考することが大切で、迷わずまずは行動することが必要です。 市場分析はどう進める? 現在、数字を用いた分析の機会は少ないですが、今後開発を進めている製品の市場分析においては、MECE(漏れなくダブりなく)を意識して全体を網羅した切り口を見つけ出し実践したいと考えています。都市別や規模の大きさなど、思いつく限りの切り口を活用し、まずやってみることが大事です。仮に傾向が見え始めても、思考を止めずに「本当にそうか?」と他の視点から再度検証します。 なぜ議論を重ねる? 常にどのような切り口があるかアンテナを張り、プロジェクトメンバーとの議論では、定量的なものだけでなく、定性的なものをどう分解するとどう見えるかについても意見を交わし、考え抜くようにしたいです。また、一度導き出した結論も「本当にそうか?」の問いを繰り返し再考し、慎重に判断するよう心がけます。

クリティカルシンキング入門

業務での「MECE」実践法を身につける

学習計画をどう進める? 学習計画を忘れずに進めることが大切だと思いました。私はMECEの分け方でプロセスを分解することを忘れがちなので、この技法を使う癖をつけたいと考えています。 情報収集の重要性とは? さまざまな切り口で分析するためには、常に多様な情報を収集できるようにする必要があると感じました。例えば、カフェでのお客の滞在時間や年齢、それに利用目的をどのように把握するのかについて、日々意識を持って観察しないと有益なデータは得られません。 問題発見にプロセス分解? 業務においても、問題発見と解決のためにプロセスを分解することが有効です。特に問題がなさそうに見える場合でも、分析を進めることで問題が顕在化し、改善策を見出すことができるでしょう。例えば、サプライチェーンやバリューチェーンのどの部分に問題があるのかを見極めたり、予決算分析で単価や数量に分解してみたりすることが挙げられます。また、部下との1on1ミーティングでも、MECEに基づいて事前に準備を進めることが役立ちます。 学びをどう業務に活かす? これらの学びを今日から業務に取り入れてみることが重要です。アナログのツール、例えば紙なども積極的に活用するべきです。そして、単発で終わらせずにしばらく経ってから再度考えることも必要です。また、自分一人では偏りや視点の漏れが生じやすいので、信頼できる他人の意見も積極的に取り入れるように心掛けたいと思います。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

アカウンティング入門

新しい学びに目覚めたBS分析の楽しさ

BSの基本を理解するには? BS(バランスシート)についての学習が進行している中で、以前はなじみのなかったBSの仕組みや名前の由来を知ることで、親近感が湧き、理解しやすくなりました。BSは左側が集めたお金の使い道、右側がその資金の集め方を示しており、表裏一体の関係です。また、資産の流動性については、1年を基準に流動と固定に分類されます。PL(損益計算書)と同様に、BSも事業内容や戦略が反映されます。 借り入れの影響と注意点 借り入れに関しても、当たり前ですが利子がつくため、慎重に行う必要がありますが、必要な場合もあります。「脂肪が負債」という例えが面白く、BSをCTスキャンに例えると理解が進みます。 自社のBSをどう活用する? まずは自社のBSを分析し、同業他社も確認します。自社では成長への投資がどのようなストーリーを持つのかを考え、自分なりの解釈を深めます。具体的な例としてJRやDeNAを参考にすると良いでしょう。他の受講生の意見にもあったように、自分の家計のバランスシートを見直すことも、身近で面白いアプローチです。 学習習慣を定着させるには? お盆期間を有効に活用し、朝の時間を学習にあてて習慣化しました。自社や同業のPLやBSを分析し、特色や個性を導き出すことに注力します。数をこなして慣れることが重要で、その際には資金の使い道と調達の両面で考えることが大切です。いよいよ、やり始める決心を固めました。

マーケティング入門

ビジネスチャンスの新発見法を学びました

自社の強みをどう見極める? 自社製品の強みを分析し、それがどのようなセグメントに刺さるかを見極めることの重要性を再認識しました。漠然としたニーズの仮定に頼るのではなく、具体的にそのニーズを持つ人物の属性を見極めることで、ターゲットを確実に捉えることが必要です。 ターゲット市場の規模をどう考える? さらに、ターゲットとなる市場の規模が小さすぎると魅力が薄れるため、どの規模のターゲットがビジネスに適しているか、事前に検討することも大切です。 顧客セグメントの理解が開く可能性とは? 自社で担当する製品の市場において顧客セグメントを理解することで、各セグメントに向けた戦略を立てることが可能です。また、自社の強みを把握することで、これまで注目していなかった市場でのビジネスチャンスを確認する機会も得られるでしょう。例えば、現在は特定の市場でビジネスを展開しているが、隣接市場でのチャンスについても検討が必要です。 具体的な分析手順はこうする 具体的な手順としては以下の通りです。 1. 自社製品の強みを理解する。 2. 担当製品が現在どのセグメントで売れているのかを分析する。 3. 現在売れているセグメント以外にも売り込める可能性があるか確認する。 4. 強みを活かせる市場で、適切な分析を行い、その後の製品戦略を考える。 このプロセスを通じて、ビジネスの拡大と新たなチャンスの発見が可能になると信じています。

クリティカルシンキング入門

グラフ化で見える学びの新発見

自分で動かす意義は? 自分で手を動かしてみることで、理解の解像度が上がるのを実感しました。特に、データをグラフ化して視覚的に捉えるという発想は新鮮で、印象に残りました。 実践で何が見えてる? 自ら手を動かして学ぶことで、学習の理解が深まりました。また、グラフ化の方法についても新しい発見がありました。こうした具体的な例を取り入れることで、理解をさらに進められると思います。 継続の理由は? 今後も、手を動かしながら実践し、新しい手法を積極的に取り入れていくつもりです。継続することが重要だと感じています。 売上分析はどう見る? 売上の過去3年分の推移を、担当別、単科別、クライアント別、職種別に分析すれば、自社の戦略を見出せそうです。特に業績が振るわないコンサルタントについては、売上を既存客と新規クライアントに分けて要因分析し、営業戦略に活用できると思います。また、決定プロセスを徹底的に分析し、CSF(Critical Success Factors)を担当別に分析することもイメージできました。全社売上におけるお客様の属性の変化も分析する価値がありそうです。 実行計画はどうなる? これらの分析を早速実行してみたいと思います。まずどのデータを使うか探し出して加工し、毎週1時間程度の時間を確保して、自分の事業の特徴を深く理解していく予定です。そして、理解した内容を営業戦略にも活かしていきたいと考えています。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right