データ・アナリティクス入門

朝活で実践!残業削減の挑戦

正解はどこにある? ビジネスにおいて、問題の「正しい」原因を特定するのはほぼ不可能です。ひとつの「正解」を求めるのではなく、さまざまな手法を試す中で気づくポイントがあると感じます。具体的には、What、Where、Whyの順に仮説を絞り込み、Howで実践するというステップを何度も繰り返すことが重要です。 根拠は見えますか? 原因を追及するためには、まず業務や問題をプロセスごとに分解すること。そして、考えられる複数の選択肢を洗い出し、根拠を持って絞り込む作業を行うことで、データに基づいた分析を進め、問題解決の精度を高めていきます。さらに、仮説を試しながらデータを収集し、結果を組み合わせてより良い解決策に導く方法が有効だと考えています。 実践の鍵は何? この考えをもとに、まずは自分自身の業務を一つのプロジェクトとして見立て、実践してみることにしました。具体的には、例に挙げられていた通り、残業時間を削減する取り組みから始めるつもりです。私の業務は3月から徐々に繁忙期に入り、5~6月がピーク。今回は複数の新規プロジェクトも同時進行しているため、学んだ知識を実際に試し、可能であれば周囲のメンバーも巻き込むことを目標としています。 朝の時間は有効? また、グループワークの際にも公言した朝の時間の有効活用を、具体的な行動計画として取り入れていこうと思います。早く出社するとつい業務に取りかかってしまいがちですが、少なくとも30分はこの計画に充てるよう心がけます。これまでなかなか実践できずにいたのですが、今週から出社時はカフェで、在宅時は始業前に、徐々にルーティンを整えつつあります。これからは、朝の時間をうまく活用し、残業削減プロジェクトを推進していく所存です。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

戦略思考入門

フレームワークで視野を広げる学びの旅

差別化の学びは何? 差別化を考える際に特に印象に残った学びを紹介します。 フレームワークは何で? まず、フレームワークを用いることの重要性を挙げます。マクロからミクロまでの広い視野で細かく分析するには、フレームワークが欠かせません。フレームワークを使用することで、見落としを防ぎ、思考のバイアスを取り除き、新たな気づきを得ることができます。 顧客視点はどう? 次に、顧客視点で考えることの重要性です。競合が行っていないことに目を向けがちですが、顧客が喜ぶような差別化をしなければ成功しません。顧客のニーズを何度も考え抜く粘り強さが必要です。 模倣防止は可能? さらに、他社に模倣されない施策を講じることが求められます。すぐに模倣されてしまう施策は、あっという間にコモディティ化してしまい意味がありません。自社独自かつ模倣が困難で、長期的な継続が可能な施策を打ち出すことが重要です。 過去とどう向き合う? バックオフィスにおいては、競合との差別化ではなく、自分たちの過去との差別化を考える必要があります。業務効率や業務品質、過去のクレームなどを分析して課題や実績を洗い出します。顧客から直接ニーズを得たり、現状のリソースから実現可能な施策を考えたりします。そして、その実現に向け、皆で話し合いながら意思決定を行い、実施内容を検討します。集合知の活用が鍵となります。 実践はどう進める? 具体的な実践例としては、業務上フレームワークを使う機会が少ない場合でも、適切な場面では必ずフレームワークを活用し、自己の視座を広げる努力をします。また、同じ部署の仲間を競合と捉え、自分にしかできないことで自身を差別化することも一つの方法です。

クリティカルシンキング入門

データ分析で視野を広げる学びへの旅

データ分析の手法とは? データを見る際には、単に与えられた数字を眺めるだけでなく、自らデータに触れて比率などの必要な情報を引き出し、グラフ化することで、複数の視点から分析することが重要です。こうしたアプローチにより、データを多角的に捉えることができます。 MECEで現状を把握するには? データを分解する際は、MECE(Mutually Exclusive and Collectively Exhaustive)を意識することが大切です。同じ内容を繰り返すことなく、全体を漏れなくカバーすることで、現状を正確に把握できます。 具体的な分析の例は? システムや業務の分析では、具体的な例として航空券の購入フローや空港での搭乗フロー、整備フローなどを分解して考えることが挙げられます。また、売り上げ分析では、路線別や年齢別、搭乗回数別に分解してみることも効果的です。 業務に応用できるか? これらの手法は日常業務でも活用可能です。例えば、システム障害発生時の対応やアクセス数のデータ分析、WEBサイトへの攻撃分析といった場面でも役立ちます。 テンプレート活用の効果は? さらに、切り口のテンプレートを作成すると便利です。例としては、航空券購入から搭乗後までのプロセスを旅客の視点や業務の視点で分類することが考えられます。また、研修アンケートの分析にもこの方法を応用できます。受講前には思いもよらなかった角度からデータを切り分け、Tableauといったツールの活用も視野に入れると良いでしょう。 新たな視点が発見を生む? 日常業務においては、失敗を恐れずにデータを分解し、新たな視点で見ることがスタート地点です。こうした姿勢が新たな発見につながります。

アカウンティング入門

PLで変わる利益の見方と経営戦略

PL読み方で経営判断に役立てるには? PL(損益計算書)の読み方が変わることで、どの項目が利益を生み出しているのかを正確に把握し、経営判断に役立てられると考えました。例えば、低価格戦略を採用する場合、売上総利益率の管理が重要であり、原価や人件費の削減が利益確保の鍵となります。また、商品の回転率向上や付加価値の高い商品の販売比率を分析して、売上を最大化する施策を考えることができます。PLを利益構造の視点で分析することで、経営戦略の精度を上げ、持続的な成長に結びつけることを学びました。 病院経営で利益を上げるには? 病院経営においても、診療報酬や自費診療の構成を分析し、どの診療科やサービスが利益を生んでいるのかを明確にすることが重要です。例えば、外来、入院、手術、検査の各部門の収益性を分析し、利益率の高い診療を強化する戦略が考えられます。さらに、物品の共同購入、在庫管理の最適化、ICT活用による業務効率化、スタッフの業務フロー改善による労働生産性向上にも役立てたいと思います。 患者の回転率向上に向けた施策は? 病院では「患者の回転率」という視点が特に重要です。例えば、病床回転率を高めるために、退院支援の強化や在宅医療との連携を強めることで入院日数を適正化し、より多くの患者を受け入れることができます。また、外来診療や手術件数を増やすためのスケジューリング最適化も重要です。診療報酬データや患者満足度調査の結果を活用し、どのサービスに改善の余地があるのかを分析することで、経営戦略の精度を高めることが可能です。例えば、患者満足度が低い診療科で業務フローを見直し、患者リピート率を向上させる施策を立てることもできます。このような視点で取り組みたいと考えています。

データ・アナリティクス入門

悔しさを力に変えた成長の軌跡

社員評価はなぜ低い? 最近、私は経営層に対して、社員の口コミ評価が低いという問題に関する提案を行いました。分析の結果、「社員の相互尊重」、「社員の士気」、「人材成長への長期投資」という3つの項目が他の要素と相関しており、影響度が高いことが明らかになりました。また、これらのスコアは他社と比較しても低い状況です。こうした背景から、組織のソフト面(例えば、コミュニケーションの不足など)が問題の原因ではないかと考えました。 実施後の効果は? 提案内容では、1on1研修の実施や外部の相談窓口、メンター制度の導入などを挙げ、各施策実施後にエンゲージメントサーベイを通じて効果を定量的に検証し、次の対策を検討する流れを示しました。具体的な施策の順序については意見をいただきましたが、前段階の詳細な分析やストーリー構築が好評を得たため、今後の企画に繋げていく意欲が湧いています。 学びはどう生かす? また、今回の学びを振り返る中で、いくつか印象深い点がありました。 ①【悔しさをバネに復習&活用】 最終ライブ授業で理解が追いつかない部分が多く、情けなさと悔しさを感じながらも、その感情を忘れずひとつひとつ丁寧に復習し、実務で活用していく決意を新たにしました。 ②【仲間とのつながりを大切に】 ここで出会った仲間との別れは寂しさを感じさせますが、いつかまたどこかで再会できるよう、日々変わらず努力していきたいと考えています。 ③【学びを伝え、学び続ける】 社内で自主的に学びの普及活動を行う中で、一緒にチャレンジしてくれる仲間が増えていることに喜びを感じています。私自身も、今後さらにクリティカルシンキングの講座を受講し、知識やスキルの向上を目指していく予定です。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

クリティカルシンキング入門

試行錯誤から生まれた分析の智恵

データ加工の秘訣は? データの加工においては、分布の見え方が刻み幅によって大きく変わることを実感しました。一部の刻みやすい部分だけに頼らず、あらかじめ仮説を立てた上で様々な試行錯誤を行いながら加工することが重要だと感じています。また、加工結果を伝える際には、グラフなど視覚的な資料を用いて相手の注意を引く工夫が必要だと学びました。さらに、MECEの手法として、層別、変数、プロセス分解という大きく3つの方法があることも新たな発見でした。 プラン策定の視点は? ビジネスプランの策定にあたっては、まず対象期間を明確に定義し、その期間内に成長する領域をあらゆる角度からMECEの観点で分解することが効果的だと考えます。仮説を基に分析を進めると、具体的なポイントが見えてくるでしょう。特に、層別の分解では、単に分かりやすい切り口を選ぶのではなく、意図を持った切り口にすることで、伝えたい内容をより明確に伝えることができ、相手に納得してもらいやすくなります。また、会社から得られる数字だけに頼らず、必要な要素を漏らさず情報を収集する姿勢も重要だと感じました。 レポート作成の狙いは? 日々のレポート作成や本質を押さえたアクションを行う際には、まず要素を思い描き、書き出すこと。そして、分解し、他の切り口がないかを常に考え直すことで、ポイントを簡潔かつ分かりやすく伝えることができると実感しました。 工夫の実践例は? 加工や切り口の工夫は、経験や場数、センスが求められるものです。実際の業務でどのように活かされているのか、または自分自身や家族における意思決定の場面で役立っている事例についても知ることができれば、さらなる学びにつながると感じています。

マーケティング入門

顧客の潜在ニーズを掘り起こす秘訣

成功のための顧客理解とは? 今週の事例では、顧客の隠れた真のニーズを深堀し、自社の強みを活かした製品を製造・販売することがヒット商品の成功要因だと実感しました。キャッチーなネーミングも販売を後押しする重要な要素です。また、最後の動画で「ビジネスチャンスのタネがなくなっている」や「今後AIが進化し、仕事がなくなるのでは?」といった懸念についても触れられていました。私も同様の懸念を抱いていましたが、動画を通じて、環境が変化すれば人々のニーズも変化し、そこにビジネスチャンスが生まれることを知りました。今後、顧客視点に立ち、敏感にニーズを察知し、深堀することの重要性を改めて感じました。 顧客のニーズをどう捉える? 「顧客自身が欲求に気付いていないため、単純な質問ではうまくいかない」という点は特に印象に残りました。実際にツール開発のための要望アンケートを提案していましたが、うまくいかない理由が手法の誤りにあると気付きました。顧客のニーズをヒアリングやアンケート、グループインタビューだけでなく、行動観察といった多角的な視点から捉えることが重要だと感じました。 次のステップで何をすべき? 今後取り組みたい具体的なアクションとしては、以下の点に重点を置きます。 - 常に「なぜそのように思うのか?」や「本当にそれが物事の本質なのか?」を考える癖をつける - 会社が提示する自社の強みについて、他にもないかを考える - 社内で議論し、新しい付加価値を顧客に提案する - 自社商品のカスタマージャーニーを実践する - 他業種のニーズを考え、自分自身で分析する癖をつける 以上のアクションを通じて、顧客視点を持ちつつ、自らの分析力を高めていきたいと思います。

クリティカルシンキング入門

今日の気づきが未来を創る

グラフはどう選ぶ? グラフ作成にあたっては、伝えたい内容に応じて適切な様式のグラフを選ぶことが基本です。伝えたいメッセージに合わせた数字を用い、分かりやすく誤解のない表現をするため、特にY軸のスケール設定に注意する必要があります。 文字装飾の秘訣は? 文字の装飾については、シンプルさを心掛けます。伝えたい要素に応じて適切なフォントや色を選択し、アイコンは視認性を損なわないものを使用することで、情報の見せ方全体が整います。 情報提示の工夫は? また、情報を提示する際は、単なる事実の羅列にとどまらず、メッセージ性を加えることが大切です。受け手に情報を探させることなく、視線の流れを誘導しながら、強調すべき点を的確に示す工夫が求められます。メッセージとグラフや表の内容に整合性があるかを再確認することも忘れてはなりません。 データ発信の要点は? 例えば、収支や収益、材料費、患者数といった様々なデータを定期的に発信する際、このような視覚化の工夫が大いに活かされます。事実の単なる提示に留まらず、具体的なメッセージを含めることで、経営情報だけではなく学術的な発表の場においても、受け手にとって分かりやすい資料となります。 伝え方はどうする? データ分析の結果を職員に提示する場合、棒グラフや折れ線グラフなどの基本的なグラフの種類やY軸のスケールの適正さを見直すことから始めましょう。グラフのタイトルにはシンプルでありながらもメッセージ性を加え、情報を詰め込みすぎないよう注意が必要です。また、伝えたい内容に合わせた適切なフォント、色、装飾を選ぶとともに、装飾はシンプルに留め、スライド上で受け手が情報を探す手間を省く工夫をすることが求められます。

データ・アナリティクス入門

現状整理で未来を切り拓く

状況整理はどうする? 問題解決の基本アプローチとして、まず「What」の段階で直面している状況を整理することが大切です。現状と「あるべき姿」とのギャップを把握し、単に「出願数が少ない」といった表面的な指摘に留まらず、より深い原因を明確にする必要があります。その際、状況の詳細な把握により「Where」を特定し、分析対象を絞り込むことで、無駄な検討範囲を排除していきます。 原因究明はどうする? また、次のステップとして、WhyやHowといった視点から問題の原因やその解決策にアプローチします。事業成長に直結する知財戦略の立案では、現状認識が不十分な段階で安易な解決策に至ってしまわないよう、各ステップを徹底的に深堀りすることが求められます。そうすることで、問題の核心に迫り、より的確な対策を打ち出すことが可能になります。 ロジックはどう活かす? さらに、ロジックツリーの活用により、問題を階層的かつ体系的に分解する手法も重要です。複数の視点から課題を整理し、解決策を絞り込む際には、「もれなく、ダブり無く(MECE)」を意識しながらも、実践では過度にならないよう適度に活用することがポイントとなります。多様な切り口を持つことで、問題の傾向や根本原因が見えにくくなるリスクを回避し、よりバランスの取れた分析が可能となります。 出願戦略はどう進む? 例えば、出願のためのアイディア発掘や出願計画においても、上記の手法を取り入れることで、各ステップの整理が不足している現状を改善する狙いがあります。現状のプロジェクトでは、主に主観が判断に影響しているため、まずは問題の状況整理に取り組み、ロジックツリーを活用した細分化を進めることが効果的だと感じています。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right