データ・アナリティクス入門

逆転の発想で切り拓く学び

どう仮説を組み立てる? 仮説を立てる際、3Cや4Pなどのフレームワークを活用することで、単なる直感に頼った場合に陥りがちな同じ発想の偏りを防ぐことができると学びました。フレームワークを用いることで、さまざまな角度から検討し、網羅的かつ説得力のある仮説を導き出すことが可能です。 逆の視点も意識する? また、仮説作成時には逆の視点から検証することが重要であると実感しました。反証のプロセスを取り入れることで仮説の信頼性が高まり、より客観的な判断ができると感じています。普段は「顧客の課題を定義し、その解決策を考える」というアプローチを実践していますが、解決策を検討する前に仮説を明確にすることの大切さを再認識しました。 今後の戦略をどうする? 今後は、解決策を検討する前に必ず仮説を立て、その検証を意識した取り組みを強化していきたいと考えています。「課題定義 → 仮説立案 → 解決策の検討 → 仮説の検証」というプロセスを意識することで、より論理的で根拠に基づいたアプローチが可能になると期待しています。 各部署で実践できる? 例えば、新たに導入した業務用Webアプリが期待通りに活用されていない場合、まずは「What(問題)」「Where(問題の所在)」「Why(原因)」「How(対策)」の流れで現状を分析し、各部署における利用状況や課題を明確にします。その上で、使っていない部署ごとにアプリのメリットを整理して伝えるとともに、各部署の業務にあった具体的な活用方法を提案することで、問題解決を目指します。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

クリティカルシンキング入門

未来を切り拓くクリティカルシンキングの旅

どのように過去を振り返るべきか? WEEK 1からの学習を振り返ると、断片的には思い出されるものの、見返したりライブ授業での振り返りによって多くのことを再確認できました。もう一度、おさらいとして見直しをしたいと思います。また、思考の出発点である「問い」を明確にし、問い続けることを意識的に徹底したいです。 課題を見つける勇気は持てていますか? 私はルーティン業務外の中長期視点の課題や問題について、つい後回しにしてしまう傾向があります。自分が考えやすい、考えたいことを先に考えてしまいがちなためです。ただ、こうした課題の中にこそ本質的な会社の課題が潜んでいる可能性があると思います。勇気を持ってその扉を開けてみたいと思います。 例えば、人員配置の適正化はビジネスモデルの変革にも影響する壮大なテーマかもしれません。また、海外展開強化に向けた現状課題の真因を探ったり、新規事業を模索する際にはバイアスをかけないように意識したりすることが重要だと考えます。 問いを明確にする方法は? 現状分析を試みる際にはフレームワークを使いますが、まずは問いを明確にし、一貫した問いにすることが大切です。そして、その問いについて共有するように心がけます。客観的な視点で考え、正しい日本語で文字に起こすよう意識します。相手が知りたい内容や興味を持てる資料であるかどうかも重要です。 小さな課題から何を学ぶ? 反復トレーニングの一環として、小さな課題を使ってクリティカルシンキングを体験することも続けていきたいと思います。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

データ・アナリティクス入門

競馬データと経済学で勝ち馬予測!

馬と騎手の相関はどう? G1エリザベス女王杯の勝ち馬を予測するために、馬の成績を縦軸に、騎手の成績を横軸に設定すると、相関関係をつかみやすいと感じました。さらに、馬のコンディションを要素として加えることで、勝ち馬の傾向はよりクリアになるでしょう。 平均値はどう捉える? また、平均値について学んだ際には、大谷翔平選手の年俸が推定105億円である一方で、MLB全体の平均年俸は推定7.4億円、中央値が2.3億円とされていることに気付きました。大谷選手のような高収入の選手がいることで平均値が大きく上がっていることが分かります。同様に、YouTuberの収入でも、高所得者が一部の平均値を押し上げていることが明らかです。 株価の動向はどう? さらに、日経平均株価は時価総額の大きな銘柄が加重平均に影響を与えることを学びました。例えば、ある銘柄の株価が上昇すれば、日経平均株価全体も上昇することになります。 業務分析で何が見える? 業務の中では、交換した部品の不良品発生状況を分析することで、故障の傾向を明確にし、予防的な措置を取ることができると考えています。また、分析結果を視覚的に示すことで、説明が容易になるでしょう。部署内では、作業実績を標準偏差で分析し、業務改善に役立てています。 次回の計画はどう進む? 次回のZoomグループワークではフェルミ推定を活用してエリザベス女王杯の勝ち馬を予測する計画です。また、新NISAでは株式銘柄選びや新商品の市場規模予測にも役立てたいと思っています。

戦略思考入門

深まる学びで経済性を再発見

経済性をどう掴む? 〇〇の経済性については、前提条件や注意事項があることは少し認識していましたが、「〇〇の不経済」という言葉を知り、動画で具体例を学ぶことで、この原理原則をより明確に理解できたと感じました。活用の際には、前提をチェックするために、多角的に検討して分析対象の状況や背景をよく把握することが重要であり、フレームワークや原理原則を使うだけでは簡単に解決できるわけではなく、調査や理解に努力することが不可欠だと思いました。しかし、努力が必要な部分でもフレームワークや原理原則があることを忘れてはいけず、その知恵を活かすためには日々意識し、体に染み込ませていくしかないと実感しました。 運用体制は大丈夫? 現在進めている保守運用体制の複数社でのシェアードについても、この学びを活用できそうです。現状では、すべての観点でプラスの効果が出ると想定して体制やルール、費用負担の組み立てを検討していますが、実際には観点ごとに今回学んだ経済性と不経済の両方が混在しているのではないかと考えています。運用開始後に「こんなはずじゃなかった」という事態を避けるためにも、改めて冷静に分析したいと思います。 分析の流れは? 以下のプロセスで進める予定です。 まず、背景と目的を再確認します。次に、関連ファクトを収集・整理し(数値情報)、現在想定している期待効果を経済性や不経済を意識して再度分析します(ここで主に学びを活用します)。最後に、分析で明らかになった点を基に計画の見直しが必要か確認します。

マーケティング入門

産業用コネクタ新製品開発の秘訣を学ぶ

振り返りで学びを深めるには? 6週間の振り返りを行うことで、記憶から消えかけていた内容を再度確認し、学習成果をさらに深く身に着けることができました。しかし、学んだことを実践に生かさなければ定着しないため、今後も継続して学習し実践していきたいと考えています。ただし、現時点では実践に移すためにはまだ不十分な部分もあり、さらに学びを深める必要があると感じています。 チームで市場を切り拓くには? 今回の学びを自社の産業用コネクタの新製品開発に活かしたいと考えています。まずは市場をしっかりとセグメンテーションし、競合分析を含む市場環境を確認した上で、何をすべきかをチームと共有しながら進めたいです。自分ひとりの視点に頼らず、チームで意見を言語化することで、様々なアイデアが出てくることがわかりました。このアプローチを自社のマーケティング業務にも取り入れ、チームで取り組みたいと思います。 新製品開発への具体的ステップ 具体的なステップとしては以下の通りです: 1. 狙う市場をセグメンテーションする(例:半導体製造装置、バッテリー製造装置、ビルディングオートメーションなど) 2. セグメントごとの市場ニーズを調査する 3. 調査したニーズに基づいた新製品のアイデア出し 4. 競合分析を行う 5. 新製品コンセプトを決定し、顧客へのヒアリングを実施 6. ヒアリング結果を基にブラッシュアップ 7. 製品化 これらのステップを通じて、自社の新製品開発を成功させるための具体的な計画を立てていきます。

戦略思考入門

ビジネスの知識を深めた環境保守事業の成功例

ビジネスのメカニズムとは? ビジネスの知識は「先人の知」であり、既存の法則や手法の上に成り立っていると考えられます。多くのビジネスが存続している理由を分析すると、規模の経済性、範囲の経済性、習熟効果、ネットワーク経済性といったメカニズムによって分類できることがわかります。 経済性を活かす戦略は? 当社の基幹ビジネスである環境測定関連の保守事業が全国展開したことは、規模の経済性に該当します。また、関連するシステム開発や他の環境関連部署を設置した事例は範囲の経済性に当たります。社内資源の活用だけでなく、顧客接点やブランド力といった無形資源も考慮に入れることで、規模や範囲の経済性を最大限に活かしながら、不経済に陥らないよう留意すべき点についても理解が深まりました。これにより、業務改善に対するアプローチも変わってきます。 多角化の根拠は何か? さらに、今後の多角化を進めるにあたって、単にキーワードを関連づけるだけでなく、その多角化の根拠を明確に整理し、より戦略的な思考を持つことが必要だと思いました。 多角化事業をどう分析する? 以前、自社事業の多角化状況を表に整理したことはありましたが、その経緯や現状については十分に考えていませんでした。多角化事業のそれぞれがどのメカニズム上に成立しており、現在のどの段階で規模や範囲の不経済に陥っていないかを分析することが重要だと感じています。新規事業の位置づけについても、ビジネスのメカニズムに則った説明ができるように分析を進めたいと思います。

アカウンティング入門

数字が語る経営戦略の秘密

収益活動の意図は? オリエンタルランドのケーススタディを通して、その企業が収益を上げるためにどのような活動を行い、その活動が現金の流れにどのように影響を与えているかを分析する重要性を改めて実感しました。特に、人件費が一般的な製造業とは異なり、直接売上に貢献するという考え方に基づいて「売上原価」に含まれている点が非常に興味深かったです。また、災害時のリスクマネジメントとして現金を一定量保有していることが、B/S上に反映されている点も印象に残りました。 戦略策定の秘訣は? 自社の中期経営計画策定にあたっては、まず自社の数字を整理し、競合他社との違いを明確に分析することから始めようと考えています。同時に、他業種のP/LやB/Sを参考にするとともに、異なるビジネスモデルや戦略について学ぶことで、自社の戦略に新たな視点を取り入れる可能性にも期待しています。これまで自業界内での考え方に偏りがあったことを反省するとともに、外部の事例から新たな発想が生まれるかもしれないという期待感があります。 会計と戦略はどう? 今回学んだ内容を実際のビジネスに活かすためには、B/SやP/Lの概念とその戦略への結びつきを深く掘り下げる必要性を痛感しました。まずは、会計と戦略の紐付きを理解できる書籍を用いて独自に勉強し、社内でこれらの知識に詳しい方との意見交換を積極的に進めることで、単なる知識としてだけでなく、実際の経営にどのように活用できるかを自分の中にしっかりと定着させていきたいと考えています。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

マーケティング入門

受講生が伝える学びの軌跡

リサーチの必要性は? ある企業の開発事例から、まずリサーチ段階で潜在的なニーズを見つけることの重要性を学びました。真のニーズを引き出すためには、デプスインタビューやカスタマージャーニーの詳細な分析など、緻密な作業が必要であることが印象に残りました。 ニーズと強みはどう? 商品開発の段階では、潜在ニーズと自社の強みを掛け合わせることで相乗効果が期待できると感じました。同時に、消費者がどのようなブランドイメージを期待しているのかという視点を取り入れる必要があると気づかされました。特にネーミングに関しては、開発側が届けたいイメージよりも、消費者が直感的にイメージできる言葉が求められると考えました。 調査手法はどう? さらに、カスタマージャーニーのリサーチをより丁寧に行う必要性も感じました。過去のユーザーを数名ピックアップし、デプスインタビューを実施して真のニーズを明らかにすることや、業界サービスにおけるクライアントのペインポイントを探すことで他社との差別化を図ることが今後の課題です。 行動計画はどうする? 具体的なアクションプランとしては、まず過去ユーザーの中から年齢層や職種ごとに3名のデプスインタビューを設定し(初めは5名から8名程度に声をかける)、次にデプスインタビューを通して転職活動に至るまでの行動背景やペインポイントについて再調査を行います。さらに、登録者が約2000名いるインスタアカウントを活用してインスタライブを実施し、ユーザーの生の声を収集していく予定です。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right