データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

戦略思考入門

戦略的視点で差別化を追求!

VRIO分析のメリットは? VRIO分析というフレームを初めて学ぶことができました。これは3Cに近い概念で、自社、競合、顧客の視点を持ちながら、さらに差別化ポイントや機会を整理するのに役立ちます。「戦略」を打ち出すために非常に有用であると感じました。 オフライン戦略はどう? 最近では、展示会やウェビナー、リアルセミナーなどのオフラインのマーケティング活動において、他社がさまざまな方法を試しながら顧客を獲得しています。自社は他社と比較して、開始のスピード感で遅れをとっている現状です。しかし、他社が必ずしも費用対効果を上げて成功しているわけではなく、試行錯誤の段階にあるようです。自社がこれを始める際には、成功のための方法や自社らしさの差別化を図り、どのように収益を生むかという視点を重視したいと考えています。 ターゲット設定の意義は? まず、施策ありきではなく、ターゲットを明確にすることが重要です。つまり、WHO、WHATを明瞭に定義した上で、HOWの整合性を整理したいと考えています。その上で、競合との差別化や自社の強みを活かした業務を展開していきます。まずは経営陣とともに、ターゲットの定義や自社の特徴、差別化ポイントを可視化し、目線を合わせて戦略と戦術を考えていきたいと思います.

アカウンティング入門

資金戦略が導く成長のヒント

自己資金と銀行利用の違いは? 同じカフェの経営においても、経営方針が異なることで運営方法が大きく変わることを理解しました。特に、自己資金だけで事業を回す場合、拡大や発展に限界があることが明確になりました。一方で、銀行などからの資金調達を活用することで、事業と利益の拡大を狙えるため、戦略上の重要性を実感しています。 BSの違いはどこ? また、現在管理している子会社のバランスシート(BS)を比較すると、同じ業種であっても資金調達方法に大きな差があることが見受けられます。ある会社はレバレッジを最大限に活かして成長を追求するのに対し、別の会社は豊富な現金を保有し、限られた資産の中で運営しています。このような異なる経営アプローチが互いの特徴として表れているため、双方の良い点を共有しシナジーを生み出したいと考えています。そのためにも、BSの理解をさらに深める必要性を感じています。 情報共有の意義は? さらに、企業や業種ごとのBSの違いについて少しずつ理解が進んできたと感じています。上場企業の決算資料も確認し、経営者の考えや方針を読み解くことで理解を深めることを目指します。自分だけの学びに留まらず、部内で情報を共有し合い、互いに教え合うことで知識を確実なものにしていきたいと思います。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

アカウンティング入門

「会社の健康状態を見抜く方法を学んで」

B/Sの構成を理解するには? B/Sの構成がどうできているのか、得たお金の使い道などが理解できました。資産、負債、純資産が記載されており、「会社の健康状態」という言葉がすごくしっくりきました。「見方」として、流動資産、固定資産、流動負債、固定負債、純資産の5ブロックに分かれているバランスが重要で、私がB/Sから読み取りたい「相手方の経営状況」がここから読み取れると理解しました。細かい部分は理解しきれていない所も多く、次週の学習で理解を深める予定です。 リスクの程度をどう知る? WEBから入手できる情報でまずは負債の情報を見て、そのリスクの程度を知ろうと考えました。また、自社の情報を見て、他社との比較を行い違いがどこにあるのか、また自社のお金の使い道を把握することで、今後どうしていくべきかの仮説を立ててみようと考えました。 自社と他社の比較分析 具体的には、次のことを行いたいです。まず、WEBからの情報を入手し分析すること。そして、自社情報の分析も行います。リスクの程度を知り、自社と他社との相違点を見つけ、改善ポイントを見つけて改善案を考えることが重要です。最後に、この結果を経理部門と共有し、B/Sの読み方や考え方が間違えていないかを確認する機会を準備します。

アカウンティング入門

損益計算書で強化する経営力

損益計算書を理解するには? 損益計算書の各項目をしっかり理解することができました。まずは全体をざっくりと観察し、各項目の推移を確認することで事業が順調かどうかを判断できる点が分かりました。また、利益を上げるためには、提供する価値をどのように考えるか、つまりコアバリューをしっかりと描いてブレないことが重要であると強く感じました。コアバリューが揺らぐと、お客様が持つ価値観が崩れ、離れてしまう可能性があると感じました。 コアバリューをどう活用するか? 現在の製品におけるコアバリューとは何かを明確にし、それを意識した利益計画を立てたいと思います。新規開発や生産性向上の施策を講じる際には、生産性を向上させることでコストを下げるのか、無駄を省いて利益を上げるのか、その際に品質が保たれるのかを考えたいです。コアバリューを意識しながら意思決定を行うことができればと考えています。 自部門とどう比較する? 今回の講義では、損益計算書の見方や分析方法を学びました。まずは自部門の毎月の損益計算書と照らし合わせ、現状を把握し、本講義や書籍を参考に自分なりの見解を出してみたいと思います。そのうえで、分からない点があれば、経理や会計に詳しい方に質問してみようと考えています。

データ・アナリティクス入門

比較で照らす課題と新発見

問題はどこに? 分析においては、比較の重要性を学びました。具体的には、問題箇所をプロセスごとに分解し、その中でどこが課題となっているのかを明確にする方法です。業務内容によっては、顧客数や単価、さらには年齢層や競合の視点なども考慮する必要があります。これまでは感覚的に分析していたため、今後はストーリー性を持たせた見通しの立て方が有効だと感じています。 利用動向はどう? たとえば、コロナ前後でサービス利用が減少しているという現状について、一人当たりの利用量が下がっているだけでなく、利用者全体の数や競合の動向も踏まえて比較検討することで、新たな発見が得られる可能性があります。各要素を分解して分析することで、より明確な課題の特定が進むと考えています。 データはどう整理? そのため、まずは現在あるデータをプロセスごとに整理し、「サービス料」と「サービス利用者数」の比較からアプローチを始めます。仮説としては、サービス料に何らかの課題が存在するはずなので、一人あたりのサービス料、最大値と最小値、中央値といった指標を調査し、問題がどこにあるのかを絞り込んでいきたいと思います。さらに、競合するサービスの状況も合わせて検証することで、より具体的な分析が可能になると考えています。

アカウンティング入門

B/Sで見る企業の体格チェック

B/Sの構造をどう捉える? B/Sは、左側がお金の使い道、右側がお金の調達方法という構造になっています。特に印象に残ったのは、「会社の体格とその健康状態を知るもの」という説明です。つまり、資産が体格、純資産が筋肉や骨格に例えられ、会社全体の健康状態を判断する材料となるという考え方です。また、1年以内とそれ以上で短期・長期に区別する点も理解しやすかったです。 B/Sの比較はどう? 自社の直近年度と前年度のB/Sを比較し、その変化を把握したいと感じました。同時に、同業他社とのB/Sの違いを明らかにすることで、自社の立ち位置を確認できると考えています。さらに、次年度に向けた新規事業の方向性や資金調達法の選択、そして理想的なバランスについての考察にもつながると期待しています。 上場企業から何を学ぶ? 動画で2社のB/Sが示されていたように、まずはネットで上場企業のB/Sに触れることで見慣れることが重要だと思います。大手企業から中小企業へと段階的に比較しながら、同業他社のバランスを確認していきたいです。そして、自社のB/Sについても、先月の月次B/Sと1年前の同月のB/Sを改めて見直すことで、これまで気づかなかった変化に気付けるのではないかという期待があります。

データ・アナリティクス入門

数字が紡ぐ学びと成長の物語

各項目分解の効果は? 各項目を分解して、それぞれの数値に注目する手法は非常に有効であると学びました。実際、インサイドセールスの業務では各項目に基づいて数値を集計しており、このやり方が資料作成などの他の業務にも応用できることを実感しました。 A/Bテストの判断は? 一方、A/Bテストに関しては、正直なところ疑問点が残りました。教科書上では理解できる内容ですが、実際に予算を投じる判断となると、やはり検討が必要だと感じます。 図解と数値比較の視点は? また、資料作成時に業務の図解を作成する際、各項目を分解して図にする考え方は今回学んだ内容に似ていると感じました。しかし、実際に数値を比較する際は、割合を用いたシンプルな方法が最適だとも思いました。そのため、簡単な割り算を暗算できるようにしておくことが大切だと考えます。 実践習慣の重点は? さらに、実践に向けた習慣として、以下の点を意識していきたいです。まず、図解のパターンを把握すること。次に、簡単な暗算を身につけること。そして、what、where、why、howの流れをフレームワークとして常に念頭に置き、議論の根本から取り組むようにすることです。これらを習慣化して、業務に生かしていきたいと思います。

データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

「比較 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right