アカウンティング入門

数字が繋ぐ出店成功の秘訣

損益計算書の要点は? 損益計算書は、会社の収益状況を示す成績表として、売上総利益、営業利益、経常利益、税前当期純利益、そして最終的な当期純利益という5つの基本項目から構成されています。売上総利益は、商品やサービスの販売前に発生する費用を差し引いた数値を示し、営業利益は本業から得られる利益を表します。さらに、海外からの材料調達に伴う為替差益や、店舗出店時の支払利息などの財務活動による損益を加えたものが経常利益となり、そこに店舗売却益や火災などの一時的な損益を反映させることで税前当期純利益が算出されます。最終的に、税金を差し引いた当期純利益を把握するためには、まず全体の売上推移や各項目の売上比率に着目し、過去の実績や業界平均、自社目標との比較が不可欠です。 出店事例の意義は? 実際のカフェ出店事例では、出店コンセプトの明確化が極めて重要であることを学びました。コンセプトが明瞭になると、それに応じた仕入、店舗設計、採用、設備投資、商品開発などの基本事項が見えてきます。その過程で発生する各種コストの計算も可能となり、継続的な事業運営のために損益計算書を活用して売上アップや経費の見直しといった対策が求められます。売上規模に応じて最終的に残る金額が変化することからも、売上確保の重要性が実感でき、また、販売費や一般管理費の工夫により利益率が改善できる可能性があることが確認されました。 現状把握の方法は? 担当店舗では、まず出店コンセプトに立ち返り、現状とのギャップを把握することが必要です。現状、店舗従業員がどの程度コンセプトを理解しているか、また、従業員や地域、顧客が考える理想のコンセプトとは何かを調査し、今後の方向性を明確にした上で損益計算書を再確認することが求められます。さらに、コンセプトの違いが損益計算書の構成比にどのように影響を及ぼしているのかを把握し、店舗責任者と現状の課題やその対策について話し合うことで、本社と店舗が共通認識を持ち一体となって事業運営に取り組む体制を整えることが重要です。 数値理解を深めるには? 店舗責任者向けの研修では、今回の学びを活かし、各自の数値に対する理解度を高めることを目指します。店舗ごとに異なる規模や運営体系の中で、自ら課題を抽出し改善策を提案できるレベルへ引き上げるため、損益計算書の読み方や、毎月の売上達成状況の確認が基本であることを強調します。講義資料作成にあたっては、単に言葉の定義を伝えるだけでなく、その意味や具体的な活用方法を実践に直結する事例を交えて、すぐに取り組める内容に仕上げることが狙いです。 店舗分析はどう進む? また、既存の担当店舗については、まず上司との間で出店コンセプトの認識を統一し、経営計画書などからコンセプトを再確認します。その上で、店舗の事業活動が売上、利益、経費とどの程度連動しているかを客観的な数値で分析し、店舗責任者に現状の課題を明確にさせることが大切です。具体的な改善策を、損益計算書上のどの項目にどのように反映されるのかという観点から検討し、数値的根拠をもって提案させることで、責任者自身が解決策のイメージを具体化できるよう指導します。 効果の伝え方は? さらに、上司へ改善策を提案する際には、業界の一般的な数値や他社の運営状況を踏まえ、根拠を強化した説得力のあるアプローチが必要です。キャッシュフローの分析など、同業他社の事例を参考にする視点も取り入れながら、改善策の実現に向けた動きが求められます。 自発的研修の意義は? 研修資料の作成に際しては、特に運営費及び一般管理費に着目し、各店舗の費用状況を業界平均や社内の他店舗との比較を通じて分析する内容を検討します。受講者自身が「自らの店舗分析」を通して、主体的に店舗改善に取り組む意識を持てるよう、やらされる研修ではなく自発的な行動を促す構成に留意することが重要です。

戦略思考入門

広い視野で切り拓く挑戦

ゴールはどう設定? 学びを通して特に大切だと感じた点は、まず「明確なゴール設定と広い視野」が必要であるということです。自身の役割や部門にとらわれず、大局的な視点を持って目標を定めることの重要性を実感しました。ただし、具体的にどのように視野を広げるかは今後の課題としています。 選択は本当に必要? 次に、「取捨選択の重要性」です。目標を最速・最短で達成するためには、リソースを集中させるとともに、何をやらなくてもよいかを見極める優先順位付けが不可欠だと気づきました。 独自性って何だろ? さらに、「独自性の意義と活用」については、自身の価値向上において独自性が重要だと実感しています。これは、現在取り組んでいる分野の活動とも重なり、大いに共感できる部分でした。 壁を越える方法は? 一方で、部署の壁を越えて「まずは試してみる」精神で他チームと連携し改善を図る一方、ファシリテーションや意思決定の場面で迷いが生じ、迅速にリードできていない課題も感じています。そのため、上司の助けを借りずに、自律的に問題解決を進められるようになることが目標です。 何を目指すべき? 今回の学びを踏まえ、まずは広い視野を持って明確なゴールを設定し、部署やチーム間の価値観の違いを乗り越えるために、相手の立場を理解する対話を積極的に行いたいと考えています。また、複数の選択肢から最適な道を選ぶため、意思決定やファシリテーション能力を具体的に強化する必要性を感じています。 試行は効果的? 特にLive授業を通じて、自分の弱点として「やらなくていいこと」を特定する力が足りないと痛感しました。問題に直面すると「まずは試してみる」という思考に陥りがちですが、今後はあらゆる可能性を考慮し、最も効率的な方法を選び、スピードを意識して行動していきます。 意思決定はどう? これまでの会議などの意思決定の場では、不十分な情報で「まずは試してみる」形になり、後になって問題が浮上したり手戻りが発生したりすることがありました。しかし、戦略的思考を取り入れることで、より正確な意思決定ができると考えています。 プロセスを整理? 具体的には、以下のプロセスを意識しています. ・何について意思決定するのか、またその意思決定によってどのような状態を目指すのかを明確にする。 ・必要な情報を客観的なデータに基づいて収集・分析し、現状を正確に把握する。 ・可能な選択肢を洗い出し、それぞれのメリット・デメリットを比較検討する。 ・リスク、コスト、効果、実現可能性などの判断基準を設定し、どの選択肢が目標達成に最も貢献するかを評価する。 ・決定した内容を実行に移し、定期的に結果を検証してプロセスを改善する。 行動に自信は? また、具体的な行動としては、個人の経験や勘に頼らず、客観的なデータや事実に基づいた判断を行うことや、異なる部署や立場の意見を取り入れて多角的に検討すること、そして各選択肢のリスクとリターンをバランス良く評価することを心がけています。さらに、大きな意思決定の前に小規模な試行を行い、PDCAサイクルを回すことで、着実な改善を目指そうとしています。 連携で何が変わる? これらの取り組みを通して、会議の効率性と意思決定の質を向上させ、最終的には上司の助けを借りずに自律的に問題解決を推進し、チームや組織に貢献できる人材を目指します。特に、部署を横断した連携においては、各部署の目標や課題を理解した上で共通のゴールを設定し、互いにWin-Winの関係を築くようなファシリテーションを心がけていきたいと考えています。

データ・アナリティクス入門

仮説立案と検証で見つけた新たな視点

仮説立ての難しさをどう克服する? 前回までの演習で、ヒントがない状態で仮説を立てることに慣れておらず難しさを感じました。その後、講義を受けて新しい学びを得たので、以下に講義のメモをまとめます。 効果的な仮説はどう構築する? まず、仮説を考える際のポイントですが、複数の仮説を立てることが重要です。決め打ちにせず、異なる切り口から仮説を立て、仮説同士に網羅性を持たせる必要があります。そして、仮説を検証するためのデータを評価する際には、何のために比較をするのかを考え、その意図を持って選択することが大切です。 仮説思考で何を得られる? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があります。結論の仮説は、ある論点に対する仮の答えであり、問題解決の仮説は具体的な問題を解決するための仮説です。仮説を考えることの意味としては、検証マインドの向上と説得力の強化、関心と問題意識の向上、そしてスピードアップが挙げられます。 マーケティングミックスの整合性は? マーケティングミックスについては、製品戦略(Product)、価格戦略(Price)、流通チャネル(Place)、コミュニケーション戦略(Promotion)の要素を整合させることが必要です。また、ICTによる新しい手法やブランド価値の向上により、価格競争から抜け出すことを目指します。 仮説思考を鍛える方法は? 仮説思考を鍛えるための方法としては、知識を広げて耕すことが重要です。「なぜ」を5回繰り返す、別の視点から見る、時系列で動的に把握する、思考実験的に将来を予測する、類似や反対する事象とセットで考えることが有効です。その後、ラフな仮説を作り、新しい情報と組み合わせながら常識を疑い、発想を止めずに検証します。また、必要な検証の程度を見極め、情報を集めて分析し、仮説を肉付けして、間違っている際にはやり直します。 リーダーはどう支援する? リーダーの役割としては率先垂範すること、質問を通じてメンバーを育成すること、チームで役割を分担して仮説を検証することが求められます。 カスタマージャーニーで何を意識する? カスタマージャーニーについては、新しい5Aカスタマージャーニーを理解し、顧客が推奨者となるような有効なコミュニケーションを継続することがポイントです。 クロス分析の利点は? クロス分析では、複数の項目でデータを集計し、傾向や意味合いを把握します。状態の把握や傾向分析がしやすく、次の打ち手が立てやすくなります。 マーケティングの基礎は何か? マーケティングの基礎として、セリングとマーケティングの違いを理解し、顧客ニーズを捉えて顧客満足を得ることが重要です。マーケティングは「買ってもらえる仕組みづくり」です。 仮説を実務にどう活かす? 今後、WEBでのリード獲得の企画にこれらの学びを活用します。仮説を感覚的に立てるのではなく、根拠のある説得力を持った仮説を立てることを目指します。また、フレームワークの活用が有用であると感じたため、仮説を立てる訓練を重ねることを習慣づけます。分析においても、仮説を検証するために検証の必要程度を見極め、必要な情報を集め、クロス集計などを活用することを心がけます。最初は大変かもしれませんが、習慣づけることでスムーズに実践できるよう努めます。

戦略思考入門

航空業界の革新を目指すコンタクトセンター戦略!

事業戦略における重要ポイントは? 航空業界のコンタクトセンター運営における事業戦略・企画において意識すべきポイントは以下の5つです。 まず、3C分析を活用します。市場・顧客(カスタマー)の観点からは、顧客ニーズや市場動向を詳細に把握し、サービスに反映させることが重要です。競合(コンペティター)の観点からは、競合他社の運営方法やサービス内容を調査し、自社の強みと弱みを比較して、成功事例や失敗事例を参考にします。自社(カンパニー)の観点からは、内部リソース(人材、技術、プロセス)を評価し、強みを活かした戦略を立案します。 SWOT分析をどう活かす? 次に、SWOT分析の活用です。強み(Strengths)としては、最新技術の導入やブランド力を活かしたサービス提供が挙げられます。一方、弱み(Weaknesses)としては、リソース不足やプロセスの非効率性の改善が必要です。機会(Opportunities)には、AIやビッグデータ解析などの新技術を活用した新しい市場や顧客層へのアプローチがあります。脅威(Threats)には、競合の進出や規制の変化に対応するための準備が含まれます。 顧客対応プロセスの最適化は? 3つ目のポイントはバリューチェーン分析の活用です。顧客対応プロセスの効率化、スタッフのトレーニング充実、技術サポートの強化など、各機能を分析し、そのコストを詳細に把握することで無駄を削減し、高い付加価値を生む部分にリソースを集中させます。 顧客視点をどう強化する? 4つ目は顧客視点の強化です。顧客満足度の向上のために、顧客のフィードバックを積極的に収集し、サービス改善に活かします。また、顧客データを活用して個々のニーズに応じたパーソナライズドサービスを提供します。 継続的な改善を実現するには? 最後に、継続的な改善です。PDCAサイクル(Plan、Do、Check、Act)を実践し、継続的にサービスを改善します。また、業界のベストプラクティスを取り入れることで、自社の運営に反映します。 これらのポイントを意識し、3C分析、SWOT分析、バリューチェーン分析といったフレームワークを活用し体系的に情報を整理して戦略を立案します。顧客視点を重視し、継続的な改善を行うことで、コンタクトセンターの運営を効果的に進めることができると考えました。 実行に移すためには、まず3C分析を行い、顧客ニーズ、競合他社、自社のリソースを詳細に把握します。次に、SWOT分析を用いて強み、弱み、機会、脅威を明確にし、戦略を立案します。さらに、バリューチェーン分析で各機能の効率化とコスト削減を図り、顧客視点を強化するためにフィードバック収集とパーソナライズドサービスを実施します。最後に、PDCAサイクルを回し、継続的な改善を行い、業界のベストプラクティスを取り入れることで、効果的なコンタクトセンター運営を実現させることができると考えました。

戦略思考入門

利益向上を目指す戦略の新提案

組織目標って何? Week1では、組織のゴール設定について学びました。Week2では、経営者の視点を持ち、戦略的に考える手法を習得しました。Week3では、各種フレームワークを用いて自社と他社の強みを整理し、差別化を図る戦略手法に触れました。Week4では、ゴールに向けてやるべきこととやらないべきことを明確にする選択手法を学び、さらに、単位時間あたりの利益率や顧客の成長性を見極め、企業文化とキャラクターを唯一無二の存在にする考え方を理解しました。 全体利益はどう? そして、Week5では、会社全体の利益率を上げるための考え方を学びました。具体的には、「規模の経済性」、「習熟効果」、「範囲の経済性」を駆使して、会社の利益を追求する方法を学びました。 規模の効果は? まず、規模の経済性についてです。自社製品は受注生産が主で大量生産の感覚はありませんが、10年ほど前から期末に集中しないように取り組んでいます。また、部品を含めた在庫をできるだけ減らす試みも進行中ですが、緊急時の対応(例えば、コロナの影響や故障時)では調達が困難になるリスクもあります。利益率を比較すると海外他社の方が優位であり、自社でも改善が求められていますが、これはグローバルなシェアの高さに起因しているようにも感じられ、改めて組織のゴール設定(Week1)が重要であると考えさせられました. 習熟のコツは? 次に、習熟効果についてです。私の部署の組織戦略の一つに教育強化が掲げられており、「習熟効果」に基づいた考え方が反映されています。取扱説明業務には一定の経験が求められ、新人やベテランともに製品のプロとして期待されています。新人が自信を持って説明できるようになるためには、少なくとも3年の経験が必要です。このため、経験に依存するため、生産性の面で課題があり、社員への精神的負担も大きいのが現状です. 範囲統合はどう? 最後に、範囲の経済性についてです。類似した製品に使用する部品や開発コストを統一し、コスト削減を図っています。使用顧客の視点からも、同じ会社から提供される製品に共通性がある方が使いやすく、販促にもつながります. シェア増はどう? 規模の経済性に関しては、TOVの国内シェア増加がどの程度の変化をもたらしているのか確認し、海外他社と自社の利益率の主要因を事業部に確認する必要があります. 教育見直しは? 習熟効果については、自組織の教育体制を見直し、習熟効果を高めるカリキュラムを作成し、アウトプット型の教育に特化して組織全体の習熟度を向上させる必要があります. 他製品の共有は? 範囲の経済性に関しては、縦割り文化が強いため、開発部が他製品で共有できるものを把握できていません。顧客に近い部署として、他組織で好評な作りや製品を自組織製品に取り入れることでコスト削減につながる提案をすることが重要だと考えています.

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

戦略思考入門

規模の経済性を超えて、真の競争力を手に入れる方法

戦略的行動をどう実現する? 戦略的な行動をとるためには、古くから存在しビジネスの定石とされる様々な法則やフレームワークを知り、それらの原理や前提条件、例外パターンを含めた本質をきちんと理解し、適切に用いることが必須であるということを学びました。 ビジネスの定石を再確認 WEEK5で取り上げられた「事業経済性」というメカニズムを例に、自らを振り返ると、規模の経済性がそもそも効かない場合や、効くとしても非常に限定的であることに気づきました。そのため、ターゲットを絞りサービスの価値を高めることでネットワークの経済性を活かし、そこで浮いた経営資源を集中投下して経験曲線を活かす。このように、範囲の経済性へつなげることでコスト低減が実現できそうだと感じました。しかし、これまで私はビジネスの定石を「感覚的」に理解していただけだったことに気づきました。 中期経営計画の重要性 変化の激しい時代と業界において、中期経営計画を立てる意味と重要性を再認識しています。次期中期事業計画の策定に向けて、ビジネスの定石を本質的に理解・整理し直し、一年近くの時間を有効に活用したいと思います。 視座と視野を意識した仮説思考 周囲の協力を得ながら、「高い視座と広い視野」「一貫性と整合性」を意識しつつ、不確実な情報の中でもハイサイクルで仮説検証を行う仮説思考でビジネスの定石を適用します。また、実際に適用した結果について関係者と共有し、複数の視点を基に明確な判断基準を持って投資対効果を意識し、比較検討・取捨選択を行っていきます。 事業計画策定の精査ポイント 事業計画の策定にあたり、次のポイントを精査します: - 目指すべきゴールは何か - 現経営資源に何があるのか - 省エネはどこまで追求するのか - ゴールに到達するために「やるべきこと」「やらないこと」は何か - ターゲット顧客は誰か - 自社はターゲット顧客にどのような価値を提供するか - それは本当に顧客が求めているものか - 独自性(強み、差別化ポイント)は何か - 独自性で本当に差別化できているか - 独自性は実現可能か、長期的に競争優位性を持続可能か - 事業経済性で効くものは何か、なぜ効くのか - 他社事例で適用できるものはないか 定石を駆使した事業計画 今回の講座を通じて、3C分析、SWOT分析、バリューチェーン分析、PEST分析、5Forces分析、ポーターの基本戦略、シナリオ・プランニング、VRIO分析、ジョン・コッターの8段階のプロセス、事業経済性など、10個以上の定石を学びました。事業計画を策定するにあたっては、これらの定石を意識しながら一つずつ理解し直し、他社事例を集めて研究しながら適用を進めていきたいと思います。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

「比較 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right