データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

データ活用の第一歩:仮説と比較軸の重要性

データ活用の目的設定はどうする? データ分析やデータ活用というキーワードは頻繁に耳にしますが、私はこれを「存在するデータを何か有効活用する方法」と考えていました。しかし、この考えではまず目的が定まっておらず、仮説もないため、何を軸にして比較するかができません。まずは仮説や比較軸を含めた目的をはっきりとさせてから取り組む必要があります。 自社内営業改善の具体戦略 私が考えたデータ活用の具体例としては、自社内の営業活動の改善と担当顧客へのアプローチの2点があります。 顧客アプローチにどう活かす? 自社内では、自身のチームの営業マネジメント改善にデータを活用します。具体的には、YoY(前年比)分析や受注傾向分析(品目、打率)を行います。 ヒアリングと提案骨子の重要性 一方、担当顧客向けには、データ分析に関する案件のヒアリングおよび提案骨子の作成を行います。この際、顧客が持つ仮説と比較軸のヒアリングを行い、それが具体的でない場合には顧客に提言を行います。仮説や軸が定まっている際には、それを提案骨子に落とし込み、定まっていない場合は定めるためのアプローチを検討します。 データ活用の第一歩は? このように、目的を明確にし、比較軸や仮説を定めることがデータ活用の第一歩であると実感しました。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

アカウンティング入門

数字で読み解く戦略のヒミツ

財務諸表をどう学んだ? 今回の講義では、PL、BS、CSといった財務諸表の種類や、その各諸表が数値に基づく定量分析を通じて企業の現状把握や健全性の評価にどのように役立つかについて深く学びました。数値情報に基づく客観的な判断が、企業活動の全体像を理解するうえで不可欠であると実感しました。 戦略策定の視点は? 特に、事業戦略や技術戦略の策定において、企業の現状を俯瞰的かつ数値的に捉えることの重要性が明確でした。講義では、企業全体だけでなく、組織内の各部門や他分野の企業と比較しながら、PL・BS・CSの各項目が持つ意味合いや特徴を分析する手法についてディスカッションしました。その結果、各項目が企業の本質や方向性を示す具体的な指標となる点が理解できました。 多角的アプローチは? また、ディスカッションでは複数の仮説を立て、各仮説に基づいて実際の財務分析を行うプロセスを通じ、分析方法の幅を広げることができました。これにより、従来の単一の視点に加えて、多角的なアプローチが戦略策定に有効であるという認識が深まりました。 今後の分析をどう? 今後は、今回の学びを活かして、企業や組織の財務状況を定量的に評価し、改善点や新たな戦略の方向性を具体的に示す分析を実践していきたいと考えています。

アカウンティング入門

お金は体で感じる財務バランス

資産と負債って何? お金の使い方とお金の集め方は密接な関係にあると実感しました。資産や負債を体の部位(体格、筋肉、脂肪など)に例えることで、改めてその意味を理解できました。まず、バランスシート(BS)の基本的な仕組み―資産、負債、純資産の関係―をしっかりと押さえることが大切だと感じました。資産はお金の使い方、負債と純資産はお金の調達方法として捉えられますが、それぞれが1年を境に流動と固定に分かれる点も重要です。具体的には、1年以内に現金化できる資産は流動資産、現金化が難しい場合は固定資産、また1年以内の支払いが必要な負債は流動負債、支払いに余裕がある場合は固定負債と呼ばれます。これら5つの区分を俯瞰することで、企業の財務バランスの良し悪しに気づくことができますし、単に負債を減らすだけでなく、将来を見据えた投資の必要性も再認識できました。 自社の現状をどう見る? これまで自社の負債の流動・固定の内訳や資金調達方法についてあまり触れる機会がなかったため、今回の学びを機に自社の状況を確認し、理解を深めたいと考えています。さらに、同業他社のバランスシートと比較しながら、流動資産、固定資産、流動負債、固定負債、純資産の各区分における自社のバランスの良し悪しを見極めることが今後の課題だと感じました。

マーケティング入門

商品は見せ方で生まれ変わる

ネーミングが成功するの? 新商品の普及に影響を与える要素として、比較優位、適合性、試用可能性、可視性の4つが基盤となることを学びました。しかし、これらの要素が整っていても、商品のネーミングやイメージが売れるかどうかに大きく影響するという事実を改めて認識しました。 コピーは伝わるの? 魅力的なコピーや名称は、商品の良さを的確に伝える上で非常に重要です。どれほど中身を充実させても、顧客にその魅力が伝わらなければ意味がないことを実感しました。 パッケージの効果は? また、売れる商品づくりは中身の向上に注力するだけでは不十分であり、ネーミングやパッケージデザインの工夫が売上を大きく左右する点も印象深かったです。中身のブラッシュアップに加え、これらの外面的な表現方法にも十分な時間と労力をかける必要があると感じています。 顧客理解は難しい? さらに、顧客心理を理解する重要性についてはこれまでの学習で十分に認識していたものの、実際に実践するとなると非常に難しいという現実に直面しました。膨大な費用をかけて何度も調査を実施できるわけではないため、普段からSNSの動向を丁寧に追い、ヒット商品の背景にある理由を考察する習慣を身につけることで、より顧客に寄り添った商品開発を実現したいと考えています。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

データ・アナリティクス入門

仮説とデータで磨く業務分析の極意

仮説で何を探る? 仮説を立てることは、原因を特定しやすくするための大切なプロセスです。複数の仮説を用意することや、それぞれに網羅性をもたせることで、様々な切り口から問題にアプローチできます。仮説を設定した後は、目的に沿ったデータ収集が必要となり、比較用のデータや反論を排除するための情報をまとめることが求められます。業務における仮説は、ある論点や不明点に対する暫定的な答えとして機能し、問題解決や結論導出のための道筋となります。 直感は信頼できる? 私自身は、予実管理の分析依頼に対して即座にデータに手をつけ、結論を出すスタイルで業務を進めています。しかし、今回の学びを通して、直感だけに頼った分析では非効率なプロセスになりがちであると感じました。それに加えて、分析の過程を言語化していないため、チーム内での情報共有が十分に行われていない点も課題として浮かび上がりました。 効率改善の方法は? 今後は、仮説を立てることで分析の焦点を明確にし、必要なデータの収集方法を検討することで全体の効率を高めたいと考えています。また、業務プロセスをエクセルなどに落とし込み、仮説からデータ収集までの流れを標準化する取り組みを進め、関心や問題意識を共有することで説得力のある分析を目指していきたいと思います。

戦略思考入門

戦略的視点で差別化を追求!

VRIO分析のメリットは? VRIO分析というフレームを初めて学ぶことができました。これは3Cに近い概念で、自社、競合、顧客の視点を持ちながら、さらに差別化ポイントや機会を整理するのに役立ちます。「戦略」を打ち出すために非常に有用であると感じました。 オフライン戦略はどう? 最近では、展示会やウェビナー、リアルセミナーなどのオフラインのマーケティング活動において、他社がさまざまな方法を試しながら顧客を獲得しています。自社は他社と比較して、開始のスピード感で遅れをとっている現状です。しかし、他社が必ずしも費用対効果を上げて成功しているわけではなく、試行錯誤の段階にあるようです。自社がこれを始める際には、成功のための方法や自社らしさの差別化を図り、どのように収益を生むかという視点を重視したいと考えています。 ターゲット設定の意義は? まず、施策ありきではなく、ターゲットを明確にすることが重要です。つまり、WHO、WHATを明瞭に定義した上で、HOWの整合性を整理したいと考えています。その上で、競合との差別化や自社の強みを活かした業務を展開していきます。まずは経営陣とともに、ターゲットの定義や自社の特徴、差別化ポイントを可視化し、目線を合わせて戦略と戦術を考えていきたいと思います.

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

アカウンティング入門

資金戦略が導く成長のヒント

自己資金と銀行利用の違いは? 同じカフェの経営においても、経営方針が異なることで運営方法が大きく変わることを理解しました。特に、自己資金だけで事業を回す場合、拡大や発展に限界があることが明確になりました。一方で、銀行などからの資金調達を活用することで、事業と利益の拡大を狙えるため、戦略上の重要性を実感しています。 BSの違いはどこ? また、現在管理している子会社のバランスシート(BS)を比較すると、同じ業種であっても資金調達方法に大きな差があることが見受けられます。ある会社はレバレッジを最大限に活かして成長を追求するのに対し、別の会社は豊富な現金を保有し、限られた資産の中で運営しています。このような異なる経営アプローチが互いの特徴として表れているため、双方の良い点を共有しシナジーを生み出したいと考えています。そのためにも、BSの理解をさらに深める必要性を感じています。 情報共有の意義は? さらに、企業や業種ごとのBSの違いについて少しずつ理解が進んできたと感じています。上場企業の決算資料も確認し、経営者の考えや方針を読み解くことで理解を深めることを目指します。自分だけの学びに留まらず、部内で情報を共有し合い、互いに教え合うことで知識を確実なものにしていきたいと思います。
AIコーチング導線バナー

「比較 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right