データ・アナリティクス入門

課題を解く力が未来を創る

問題意識は十分か? データを分析する前に、まず問題や課題を明確に意識することが大切です。単に「how」から作業を進めるのではなく、「What」「Where」「why」「how」といったステップを順に踏むことで、全体像をしっかり把握できます。また、実務においてはMECEの考え方を意識しながら進めることが求められます。 課題は整理できる? これまで、漠然とした課題に対してなんとなく手をつけがちでしたが、今後はロジックツリーを活用し、全体感と各課題のポイントを明確にしていきたいと考えています。MECEを意識して問題を分解し、整理することで、具体的なアプローチが見えてくるはずです。 現状との差を把握する? また、課題を正しく把握するためには、あるべき姿と現状の違いを整理することが重要です。単に分析を始めるのではなく、ロジックツリーやMECEを用いることで、課題点を細かく分解しながら確認していくことが必要です。出したいアウトプットを意識するだけでなく、丁寧に要素を分解し、進めていく姿勢を大切にしたいと感じました。

戦略思考入門

俯瞰力を鍛え、戦略的思考を手に入れる

俯瞰する力を磨くために 常に俯瞰して物事をとらえる必要があると感じました。キャッチフレーズ、多角化、アプリ導入などの事例を通じて、当事者になると目の前の事象や自身の経験に基づいて判断しがちですが、一歩引いてフレームワークを利用し、しっかりと分析・検討することの重要性を学びました。 気合だけでは足りない? 日々の業務では、営業目標達成のための戦略立案において、現状・市場・社内の分析をしっかりと行い、全体を把握した上で戦略を立てていくことが必要です。どうしても気合論に陥りがちですが、具体的にするために外部分析や個人の分析を行います。 未来を見据えて情報収集 日々、全体をつかむための情報入手に注力したいと考えています。様々なリソースを駆使して行動し、国内外の動きに敏感になり、今後市場がどのように変化するかを常に意識して行動することが重要です。また、部のメンバーにもそのような視点を持ってもらえるような仕組みを考え、取り入れていきます。まずは危機感の醸成を試みます。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

戦略思考入門

ターゲット明確で差別戦略

顧客ターゲットはどう? 現状を整理することの重要性を学び、差別化を考える上でまず注力すべき顧客ターゲット層を明確にする必要性を再認識しました。ターゲットがはっきりすれば、その次に業界内外の競合他社を見極める視点を持つことが大切だと感じました。 戦略は継続できる? その上で、顧客が何を求めているか、自社の差別化戦略がそのニーズを満たすことができるか、またその戦略が継続的に提供可能か、さらには他社が簡単に模倣できないかを検討する必要があると理解しました。 実務でどう活かす? これらの学びを実務における自社サービスの差別化戦略に活かすべく、今提示されている戦略が本当に最適かどうかを改めて考えるきっかけになりました。顧客ニーズの充足や継続的な提供については一定の成果が感じられますが、他社が容易に真似できないかという点には疑問が残ります。 戦略の再考はどう? そこで、まずは自社の差別化戦略について上長と議論を重ねながら、時代の流れに対応し、競合他社も踏まえた戦略の再考に着手したいと考えています。

戦略思考入門

戦略的思考で描く未来への道筋

戦略の本質は? 戦略というのは、目的地を明確化し、その目的地に最短距離で到達するための方法を考えることを指します。具体的には、「何をやるべきか、何をやらざるべきか」を決定し、さらにそこに独自性を加えることが重要です。この点についての学びを得ました。 未来はどう描く? 個人的な視点から考えると、今期の目標を達成するための取り組みとして、ジョブ評価シートの作成などが挙げられます。組織としては、オフィスが目指す方針や、メンバーを支援する際に戦略を活用したいと思います。特に、未来を描くことが足りないと感じているので、目標を具体的に思い描くことを意識していきたいです。 問題をどう整理? 現状の問題は、場当たり的な対応に陥ってしまうことです。これを改善するため、業務を整理し、将来を考えるための時間を確保することが必要です。計画を先延ばしにしないよう、ある程度のロードマップを描き、手を動かす前にゴールを明確にする時間を意識的に設けます。ゴールを明確にするためには、まず問いを立てることから始めることが大切です。

データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

リーダーシップ・キャリアビジョン入門

未来のリーダー像を描く学びの旅

理想のリーダー像とは? どのようなリーダーになりたいかを考えることで、学びに対する意欲が高まり、これからの学習が待ち遠しく感じられるようになりました。さらに、漠然としていたリーダー像を明確にすることで、現在の自分との差も明らかになり、そのギャップを埋めるための学びが次週以降にできることを期待しています。 自己貢献の観察方法は? 自分が組織に対してどのように貢献しているのか、行動・能力・意識の各要素に注目して観察したいと考えました。現状では、行動と意識に比重がかかっている一方で、能力がまだ十分でないと感じています。1週間の観察を通じて、この考え方に変化があるかどうかを確認してみたいと思います。 新たな発想を得るには? また、この3つの要素を意識することで、どのように考え方が変わり、どのような行動を取ろうと考えるのかを見てみたいと思います。計画を立てる前に、これらを意識することで新たに生まれる発想にも興味があります。これが、来週以降の学びを基にした行動計画のブレインストーミングに繋がると考えています。

データ・アナリティクス入門

問題解決のアプローチで明確なビジョンを構築

問題解決のアプローチを学ぶ 問題解決には、「現状→あるべき姿」と「現状→ありたい姿」の二つのアプローチがあることを学びました。自分の業務に照らし合わせると、現状では大学の退学率が○○%であるのに対し、ありたい姿は退学率を0%にすることです。現状とありたい姿を明確に認識することで、分析時のブレを防ぐことができると思います。 イベントでロジックツリーをどう使う? 大学でイベントを行う機会が多くありますが、その際にロジックツリーを使用し、来場者プレゼントやイベント内容を決定するのに活用できそうです。また、このプロセスをチーム内で共有することで、決定の場面で話がスムーズに進むと感じました。 分析の透明性をどう確保する? 誰かに説明する際には、分析のフレームワークを共有し、「こういった分析を行い、こう決定した」という考えの過程を透明にすることが重要です。さらに、何か分析を行う際には、闇雲に考えずに、まず分析のフレームワーク(ロジックツリーやMECE)が活用できないかを検討することを心がけたいと思います。

データ・アナリティクス入門

ロジックツリーで問題解決の新視点を発見

ロジックツリーはなぜ必要? ロジックツリーの作り方について、層別分解と変数分解の二つの手法があることを学びました。それぞれの方法は、分析したいデータに応じて使い分けることが重要だと考えます。一般的には、MECEの概念に基づいて、漏れなく重複なくと考えがちですが、実際には問題特定や新たな発見を目的として、意味のある分類ができるように、様々な視点を持つことが重要だと感じました。 層別分解の効果は? あるプロジェクトでは、問題を特定する必要があるため、ロジックツリーを用いた層別分解によって、MECEを念頭に置きながら、どのような層別にするかを考え、問題特定や意味ある分類を目指したいと思います。 ギャップ埋めはどうする? まず、理想的な状態と現状の間にあるギャップを洗い出し、ロジックツリーの層別分解に当てはめることで、多角的な視点から分析を行いたいと考えています。そして、さまざまな層別で詳細に分解し、問題箇所を特定し、そのギャップをどのように埋めていくかについての提案を資料としてまとめたいと思います。

データ・アナリティクス入門

原因探求から始まる成功への道

どうして原因分析をする? 問題解決のステップであるWhat、Where、Why、Howの流れが非常に印象に残りました。特に、どうしてもHowの部分に注目しがちですが、その前の段階で問題を明確にし、原因をしっかりと特定して分析する過程こそが、本質的な解決につながると感じました。 なぜ退会が増える? また、コミュニティ運営において退会者の増加という現象を分析する際にも、このステップが有効であると考えました。「なぜ退会が起こるのか」という問いに対し、まずは原因の仮説を立て、問題を具体的に洗い出すことが大切だと思います。 なぜ数値化で解決? そのため、現状、退会時に取得しているアンケート結果を活用することが有用だと感じます。アンケートの内容を分析し、所属期間中に行われたイベントなどの傾向と照らし合わせることで、理想的な状態とのギャップが明確になるのではないでしょうか。ギャップを数値として示すための具体的な指標についてはまだ模索中ですが、数値化が進めば対策の策定もより容易になると感じました。

データ・アナリティクス入門

再発見!学びの原点と未来

理解の進みはどう? これまで毎週の課題をこなす中で、内容の理解が進んでいると感じていました。しかし、最終講義の際に、一部消化しきれていない点や全体の流れの理解が十分でないことに気付きました。そのため、分析のテクニックに入る前に、基本的な考え方や全体の流れを再確認したいと考えています。 戦略と課題はどう? また、新サービスの展開にあたっては、現状を踏まえた上で、今後の利用促進に向けた提案を実現するための分析が可能であると感じています。一方、社内の購買データの分析については、解決すべき課題が残っているとの相談も受けています。このため、購買データの分析に取り組む前に、目的を明確にし仮説を立て、具体的な取り組みを進めていく必要を認識しています。 具体策はどうする? 具体的には、新サービスについては目的を再確認し、必要なデータの見直しを行います。また、購買データの分析に関しては、事前に解決しなければならない課題に対し、目的の明確化とそのための提案を進めることで、効果的な分析に結び付けたいと考えています。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

「現状」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right