データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

クリティカルシンキング入門

振り返りで学びを深める方法

目的は明確ですか? データを扱う際には、目的を明確にし、それにふさわしい形で情報を伝えることが重要です。このことは、相手に何を伝えたいのかを考える際に非常に役立ちます。また、目的に立ち返る姿勢も欠かせないと感じました。 良い文章の秘訣は? 良い文章とは、しっかりと目的を把握し、読み手の立場を理解し、内容がまとまっていることに加え、読んでもらえる魅力があることです。この考えをもとに文章を書くことが求められるでしょう。 グラフの選び方は? 例えば、製品の売上データを使用した顧客への活動プランを作成する際は、どの形式のグラフがデータを分かりやすく示せるかを考えます。また、スライド作成においては、強調したい部分に工夫を凝らし、フォントの変更やアイコンの適切な利用を心掛けます。 相手を意識できる? 講演会の企画書においては、その企画書を読む相手が誰なのか(例えば、依頼する医師なのか、社内向けのプレゼン用なのか)を意識し、目的が伝わる文を作成します。 行動はどう伝える? さらに、会議の議事録を作成する際には、相手にどのような行動を期待するのか、そしてどうすれば読んでもらえるかを考慮して記録します。 メールの狙いは? また、社内メールや医師へのアポイントメールでは、目的を明確にし、タイトルにも趣向を凝らすことが肝心です。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

クリティカルシンキング入門

データで伝える!効果的なコミュニケーションの秘訣

効果的な伝え方とは? 学びになったと感じたことは、相手に伝えたいことを意識して、それに合わせたグラフや文章、イメージを使用することです。 具体的には、比較を行う際には棒グラフを、継続したものを示す場合には折れ線グラフを使用します。また、文章を印象に残りやすくするために、斜体や下線、色をつけたり、フォントを変えたりといった工夫を行います。さらに、捉え方や考え方に合わせたアイコンを表示して、イメージを掴みやすくすることも有効です。 読者を引きつけるには? 文章を書く際には、読んでもらうことを意識します。アイキャッチや興味を引く冒頭を用意し、全体のバランスや体裁を整えることが重要です。また、相手に合わせて文章の硬軟を調整します。これらのテクニックは、業務の様々な場面で役立ちます。指示を受けた業務の報告、顧客への提案、取引関係先への説明、社内への告知などで、相手に合わせて表示や文章を調整することで、伝えたいことを効果的に伝えることができます。 相手のニーズに応える表現 最後に、相手の価値感や状況に合った内容、表現を心がけます。何を達成したいのか、どんなことを望んでいるのか、相手がどの程度の知識を持っているのかを考慮し、関係性に合わせた表現をすることが大切です。これらを意識して、伝えたいことをしっかりと伝えていきたいと思います。

データ・アナリティクス入門

数値とグラフで切り拓く現場力

平均値の違いは? 代表値の種類について学んだ内容はとても印象的でした。単純平均、加重平均、幾何平均、中央値という4つの代表値の違いを理解することで、従来は感覚や指示に頼っていた数値の選択を、論理的かつ具体的に検証できるようになると感じました。今後は、各平均値の特徴を自分の言葉で説明できるよう意識しながら実務に活かしていきたいです。また、Excelの関数を活用して算出することで、より実践的な理解が深まると考えています。 標準偏差の意味は? 標準偏差に関しても、データのばらつきや密集度を数値で把握する有効な指標であることを学びました。従来、平均値だけに注目していた自分にとって、標準偏差を組み合わせて分析する視点は新鮮でした。これからは、データの分析や仮説の立案において、平均と標準偏差の両面からアプローチすることで、より説得力ある結論を導き出せるよう努めていきたいと思います。 グラフはどれを選ぶ? また、ヒストグラムについても初めて触れる機会があり、その有用性を実感しました。今まであまり業務で使用する機会がなかったグラフですが、各グラフの長所と短所を理解することで、情報の伝達方法の幅が広がると感じました。今後は、提案書などでどのグラフが何を効果的に表現できるのか、理由をもって選択できるよう、実践的に活用していきたいと思います。

データ・アナリティクス入門

実務で変わるデータの読み方

代表値の意味は? 代表値という概念について、これまであまり意識していなかった部分を学びました。データの種類や求める数値に応じて、平均値や中央値などを使い分け、全体の傾向を大まかに把握する考え方はとても実務的で役立つと感じました。 グラフの使い分けは? また、グラフの見せ方にも新たな発見がありました。これまで円グラフとヒストグラムを感覚的に使い分けていたのですが、なぜ今回のケースでヒストグラムが望ましいのかを言葉にする難しさを実感しました。ヒストグラムはデータのばらつきを視覚的に示すのに適しており、円グラフは各要素の割合を把握する用途に向いているという点で、両者の使い分けが明確になりました。 幾何平均って何? さらに、単純平均や加重平均については知っていたものの、「幾何平均」という概念は初めて知りました。比率や割合で変化するデータに対して、幾何平均の考え方を用いることで平均を算出する手法を、ケーススタディを通じて理解が深まりました。今後、将来予測や予算・売上の見込みを算定する際にも、この考え方は有効に活用できると感じています。 学びの振り返りは? このような抽象的な概念は、理解しているつもりでも実務で繰り返し使用しないと忘れがちであるため、資料作成や報告の際に今回学んだ内容を改めて振り返る時間を設けたいと思います。

データ・アナリティクス入門

データ分析で見つけた新たな気づきと行動力

解決策をどう選ぶ? 適切な解決策を決定する際には、決め打ちせずに他の仮説から導き出されるHowも考慮することが重要だと感じました。自社が現状で何を優先すべきかを考え、解決策同士を比較しながら適切な選択をする必要があります。そのためには、常に目的と優先事項を意識し、立ち戻って再考することが必要だと思います。 行動が生む成果とは? 完璧を求めすぎるあまり、仮説の検証ができない、考えすぎて動けなくなることもあります。ある程度の目途がついた時点でまず行動することが、結果的に良い仮説を生むことになります。 データ整理の新たな切り口 データを切り口を変えて整理する方法について述べます。物流会社で専用アプリを使用してトラックの待機時間を集計していますが、単なる集計だけでは不十分です。時間帯別や事業所別など切り口を変えてデータを整理し、今後の活用方法を示す必要があります。 業務プロセス改善の手順 問題箇所を特定し、各事業所の業務プロセスのどこに起因しているかをグループ内で議論したいと考えています。最終的には、待機時間の集計作業から業務プロセス改善まで話をつなげたいと考えています。そのために、本講座で学んだ「客観的にわかりやすく数値化して説明する」ことを意識しながら、メンバーと議論を続けていこうと思います。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

クリティカルシンキング入門

苦手意識克服!伝わる資料作成の極意

伝える資料のポイントは? スライド作りに苦手意識があった私にとって、今週の学びは非常に大きな収穫となりました。顧客への提案資料や、社内報告資料・戦略書の作成に取り組む中で、伝えるべき情報が整理され、視覚的な要素とメッセージの整合性がいかに重要かを実感しました。 グラフの使い方は? 資料作成では、グラフや図の使い方が鍵となります。グラフにはタイトルを必ず付け、始点はゼロからに設定し、単位も明記することが基本です。例えば、時間軸の推移を示すには縦のグラフ、傾向や推移を見せるためには折れ線グラフ、各要素ごとのデータを表す際には横の棒グラフを使用するのが効果的です。また、視線が左から右、上から下に動くことを意識して、情報が読み手にとって探しやすい順序で配置されているかがポイントです。 ビジネス文章はどうする? さらに、ビジネスライティングの技術は社内外のコミュニケーション全般に役立ちます。顧客へのメールでは、タイトルと本文が明確で、相手に情報を探させないように構成することが大切です。社内メールにおいては、習熟度に関係なく誰でも理解できる文章を心がけ、社内報告資料は現状を図表を用いながら丁寧に説明することを意識しています。これらの学びを実践することで、より効果的な情報伝達を目指していきます。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

「データ × 使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right