0%
あと3分で読了
point-icon この記事のポイント!
  1. イシュー整理の重要性
  2. 数値比較の判断基準
  3. 予測対策の業務改善

イシューの本質は?



まず、データに飛びつく前に、何に対して答えを出すのかという根本的な課題―イシュー―を明確に整理することが大切です。イシューは、Yes/Noといった二つの選択肢程度に絞ることで、分析がしやすくなります。

数値比較の意味は?



次に、単一の数値だけでは状況が判断しにくいため、2つ以上の数値を用いた比較分析の重要性が浮き彫りになります。この手法により、数値同士の関係を明確に理解し、正しい判断を導き出すことができます。

業務シーンはどう見る?



業務シーンでは、キャパシティプランニング、リリース影響の判定、障害対応時の原因切り分けなど、様々な場面でこの考え方が活用されています。特にキャパシティプランニングの場合、ただ「リソースは足りているか?」と漠然と問いかけるのではなく、「現在の増加ペースが続いたとして、3ヶ月後にもリソースが十分確保できるか?(Yes/No)」と問いを明確にすることが求められます。

予測と対策はどうする?



具体的な取り組みとしては、過去のトレンドから3ヶ月後の予測使用量を算出し、実際に利用可能な物理的リソースの上限値と比較します。もし予測値が上限に近づく、または超える場合はリソースの増強が必要であると判断し、迅速な対応を実行していくこととなります。このプロセスを繰り返し実践することで、業務全体の質の向上につながっています。
※上記の投稿は、受講生より許可を得て掲載しています。

関連記事

イシューをビジネスに活かすための具体的ステップ external link

人気記事

help icon

ナノ単科とは?

実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
R.M
20代 女性 一般社員/職員
受講科目
データ・アナリティクス入門
実践につながる 学習習慣が身に付く 仲間と学び合える

総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。

avatar
A.S
30代 女性
受講科目
データ・アナリティクス入門

良かった点
データ分析の前提の考え方、意識すべきことが体系的に学べた。
違う業種の人の意見が聞けたのも貴重な機会だったと思う。

気になる点
口コミ通りといえばそうだが、想像していたよりも実践的なことは割と少なかった印象がある。
アプリやページの不調があったのが気になった。
また、グループワークはテーマによってグダグダ感が出てしまった時があった。

avatar
Y.M
30代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい モチベーションが上がる

大変有意義な1.5ヶ月でした。データ分析を学びたい!と飛びつきましたが、課題解決スキルが根本的に重要であり、その中でデータ分析がどう活かされるか?の流れを実践とともに学びました。
育児と仕事との学びの両立に苦戦しましたが、なんとか食らいついてよかったです!ありがとうございました。

「データ・アナリティクス入門」を受講した方の学び

データ・アナリティクス入門

振り返りで見つける成長のヒント

比較の意義は何? 分析とは、比較を通じて物事を具体的にはっきりさせ、より良い意思決定のための手段です。適切な比較対象を選び、物事を細かく分けて整理することで、各要素の性質や構造を明確にし、具体的な比較対象や基準を設けることができます。 目的と進め方は? 分析のプロセスは、まず①目的を明確にするところから始まります。その後、②必要な項目やデータ、仮説を設計し、③目的に応じた様々なデータを用いて分析を進め、最後に④結論をまとめていきます。 学びのコツとは? また、学びのコツとしては、①言語化、②教訓化、③自分自身の理解に取り入れることが重要です。分析を行う際には、まず仮説を立て、比較すべき項目を決定します。そして、比較の際に決定因子となる基準をはっきりと設定することを意識することが、より正確な判断に繋がります。 依頼実施のポイントは? このようなプロセスとコツを踏まえ、分析の依頼や実施の際には、目的や比較項目、基準をしっかりと押さえることが大切です。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

データ・アナリティクス入門

目的と数字が織る成功のヒント

数字の真意は何? この講座では、まず常に目的を意識することの大切さを学びました。数字そのものを見るのではなく、数字が何を意味するのかを瞬時に理解し、その上で適切な比較や分析を行うポイントを明確にすることが重要だと感じました。基本的な枠組みを意識し、それを習慣化することで、数字を正確に捉え、的確な意思決定につなげることができると実感しました。 分析と予測はどう? また、担当するサービスの現状分析や戦略立案のプロセスにおいても、単純に数字を追うのではなく、目的に基づいた各数字の解釈とその比較が不可欠であると学びました。さらに、来期の市場や売上予測に向けた取り組みでは、具体的な市場データが限られている中で、アクセス可能なデータをもとに市場の傾向を予測し、現状分析から将来の売上を導き出す方法の重要性を感じました。

データ・アナリティクス入門

目的と仮説で切り拓く分析の道

目的と仮説の意義は? 分析のプロセスを学ぶ上で大切だと感じたのは、まず目的と仮説の設定の重要性です。初めにしっかりと目的や仮説を設定しておくことで、分析中に迷ったときもその軸に立ち返り、方向性を調整することができます。一方、分析を進める中で既に立てた目的や仮説が現状に合わないことが分かれば、柔軟に振り返って調整・修正することも必要だと実感しました。 伝え方の極意は? また、分析結果を伝える相手を具体的に想定することが重要であると学びました。相手の立場や背景を考えずに分析を行うと、数字の羅列に終始してしまい、メッセージ性が希薄になる恐れがあります。目的設定と結論を伝える相手の明確化が、データ収集や加工、発見のプロセス全体を論理的に整理する鍵となると理解しました。 予想外の結論は? 一方で、講義の中でビッグデータの扱いに際し、予想外の結論が導かれる場合があるという点に、不安も感じました。どのような分析でも、蓋然性の高い結果かどうかの検証や、批判的に結果を捉える視点は欠かせません。こうしたリスクを回避するためにも、分析は一人で完結させるのではなく、周囲とのコミュニケーションを大切にしていきたいと考えています。 依頼背景を考える? 私の業務は予算管理で、主に予実比較を担当しています。これまでは、他部署からの漠然とした依頼(例えば「売上の減少」や「費用の増加」)に対し、データが示す傾向をもとにすぐに分析を行うことが多かったのですが、今回学んだ目的と仮説の設定の重要性を踏まえ、依頼の背景をしっかりと把握する必要性を感じました。 積極分析の進め方は? 今後は、例えば売上減少の原因調査において、単に結果だけを追うのではなく、依頼の背景や意図を明確にし、適切な仮説を検証するプロセスを重視していきます。また、一般的な依頼に対しては、既に認識されている問題に取り組むのではなく、未発見の課題や潜在的な問題を先に見つけ出すような、より積極的な分析を目指していきたいと思います。

データ・アナリティクス入門

発見!比較で深まる学びの力

どう比較すべき? 分析とは、対象同士を比較することを意味します。重要なのは、目的に応じた適切な比較対象を選ぶことであり、その選定においてはバイアスがかかりやすい点に十分注意する必要があります。ここで大切なのは、単に目の前のものと比較するのではなく、どのようなものを比較対象とするかが鍵となることです。 テーマの真意は? また、「愛の価値」という一見難解なテーマについても、しっかりと理由付けができたおかげで学びを深めることができました。単なる難題ととらえるのではなく、根拠を持って回答できた点が大きな成果だと感じています。 業務応用はどう活かす? さらに、この分析の手法は、様々な業務に応用可能であると考えます。たとえば、売上の見込みを立てる際には、過去の実績、見積もり件数、出荷待ち製品などの相関関係を把握することで、より精度の高い予測が可能になるはずです。同様に、適切な安全在庫の設定や費用対効果の高い広告選定、さらには攻めるべき市場の選定など、さまざまな場面で活用できると期待しています。 結果のズレは何故? なお、比較分析を行った結果、うまくいかなかった事例についても知見を深めたいと考えています。たとえば、見込みが大きく外れてしまったケースなど、具体的な事例があれば今後の参考にしたいと思います。

データ・アナリティクス入門

問いを絞れば未来が見える

イシューの本質は? まず、データに飛びつく前に、何に対して答えを出すのかという根本的な課題―イシュー―を明確に整理することが大切です。イシューは、Yes/Noといった二つの選択肢程度に絞ることで、分析がしやすくなります。 数値比較の意味は? 次に、単一の数値だけでは状況が判断しにくいため、2つ以上の数値を用いた比較分析の重要性が浮き彫りになります。この手法により、数値同士の関係を明確に理解し、正しい判断を導き出すことができます。 業務シーンはどう見る? 業務シーンでは、キャパシティプランニング、リリース影響の判定、障害対応時の原因切り分けなど、様々な場面でこの考え方が活用されています。特にキャパシティプランニングの場合、ただ「リソースは足りているか?」と漠然と問いかけるのではなく、「現在の増加ペースが続いたとして、3ヶ月後にもリソースが十分確保できるか?(Yes/No)」と問いを明確にすることが求められます。 予測と対策はどうする? 具体的な取り組みとしては、過去のトレンドから3ヶ月後の予測使用量を算出し、実際に利用可能な物理的リソースの上限値と比較します。もし予測値が上限に近づく、または超える場合はリソースの増強が必要であると判断し、迅速な対応を実行していくこととなります。このプロセスを繰り返し実践することで、業務全体の質の向上につながっています。

人気記事

「問いを絞れば未来が見える」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right