データ・アナリティクス入門

データ分析にAI活用!新たな発見の連続

ChatGPTを活用する意味は? 実践演習がメインの週だったが、データ分析は答えがない世界だと感じているので、自分で考えるだけではなくChatGPTを共に使用して問題解決を試みた場合、どのような成果が得られるかに焦点をあてて演習に取り組んだ。普段は自分の頭で考え一人で結論を出していたが、そのことに限界を感じていたため、今回の受講はAIを活用する実践の場として非常に学びが多かった。 AIの活用で得られる視点は? どれだけ訓練を積んでも、人間である以上、自らの思考には必ず偏りがある。多面的な視点でデータ分析を行うことが問題解決の第一歩であり、AIを活用して多くの視点を得ることが有効だと改めて気づくことができた。これからは、普段からAIを十分に活用するよう心掛けたい。 AI相談の工夫を学ぶ データを分析する際、必ず一歩立ち止まり、AIに素直に相談してみるようにする。AIをデータ分析のパートナーとするため、相談の仕方を工夫することも学んだ。正解を出すことを目的とするのではなく、自分の思考を広げるためのAI活用を身につけていきたいと思う。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

クリティカルシンキング入門

心に響くシンプル伝達法

提案資料はどう伝える? 業務推進に必要な提案資料の作成にあたっては、まず提案の目的、もたらすメリット、必要性、関係者への影響などをスライドに分かりやすくまとめることが大切です。資料作成時は、伝えたい内容や数値データに合わせたグラフを選び、例えば時系列データには棒グラフ、変化や推移を示す際には折れ線グラフを使用するなど、見せ方を工夫します。また、各軸には忘れずに単位を入れ、タイトルは内容が一目で分かるように工夫する必要があります。さらに、文字の表現やフォント選び、下線、太字、色などを活かしながら、情報が具体的に伝わるスライド作りを意識しています。 メールで本当に伝わる? 今回の講義を通じて、メールなどのコミュニケーションでも注意が必要だと実感しました。自分が発信するメールが必ずしも相手にしっかりと伝わっていない可能性があるため、タイトルやリード文、本文の構成をシンプルかつ要点が伝わるように工夫することが求められます。短い文章で必要な情報を明瞭に伝えることを意識し、読み手に負担をかけないコミュニケーションを心がけたいと考えています。

クリティカルシンキング入門

視点を変えると見える新たな分析世界

切り口はどう決める? 数字データを分析するとき、つい同じ刻み幅で分解してしまいがちですが、仮説に基づいて意味のある分け方であれば、必ずしも同一である必要はありません。分析の切り口は、自分が想定している以上に多く存在し、視点を変えることで、見えてくる結果も変わることがあります。このため、傾向が見えても「本当にそうか」という問いを常に持ち続けることが重要です。 新たな切り口は? また、顧客に対するアンケートの作成やその後のデータ分析、機器の稼働率や使用者の傾向の分析、ヒヤリハットの原因分析など、これまで試みたことのない切り口から分析することで、新たな傾向が見えてくる可能性があると感じました。 展望はどう広がる? 現在、私は機器の稼働率や使用者の傾向分析を進めているところです。この機会を利用して、分析の切り口を増やす意識を持ちます。利用頻度の高い機器と低い機器について、設置場所や機器の導入日、使用者の属性、利用するまでの距離、研究領域別など、さまざまな要素を考慮しながら分析し、どのような傾向が見えてくるか探っていきます。

データ・アナリティクス入門

数字と発想が織り成す学び

目的は何のため? 分析は、目的を明確にして「何のために行うのか」を意識しながらデータを取り出す必要があります。単にデータを抽出するだけでなく、複数の対象を同じ尺度で比較し、具体的な数値を導き出すことが重要です。 愛の価値は見つかる? また、「愛の値段」の算出方法は特に面白く、分析においてどの切り口や観点で取り組むかを工夫することの大切さを実感しました。普段あまり使用しない横棒グラフも、要素間の比較を行う際に試してみたいと感じています。 定量データは説得力? 加えて、数値化された定量データは説得力があり、誰にでも伝わるため、曖昧な点もきちんと数値化する習慣を身につけることが求められます。こうした分析手法は、得意先との商談、社内会議資料、さらには年度方針や計画の戦略立案など、さまざまな場面で活用できると感じています。 新たな視点を得る? 講義中の問いに対する回答を通じ、自分では気づかなかった多くの視点を知ることができました。その発想や観点を今後も取り入れながら、さらに深い分析に取り組んでいきたいと思います。

アカウンティング入門

数字に迫る!企業評価の極意

財務三表の意味は? 業務で使用していた財務三表が、事業活動の全体像を把握し定量的に評価するためのツールであると再認識できたことは、有意義な学びでした。この経験を通して、企業評価の際にどこに着目すべきか、さらに深い理解が必要だと感じています。 管理や説明はどう? また、管理職として自社やチームの現状把握、さらには今後の方針検討に活かすことも目指しています。同時に、コンサルタントとしてクライアントに対し、定量的なデータだけでなく図表などの補助資料を活用し、より分かりやすく説明できるよう工夫することにも努めたいと考えています。具体的には、週次のレポートにおいてアカウンティング視点からの項目追加や精度向上を図るなど、数字の裏付けに基づいた分析を進めていく予定です。 分析をどう進める? 全体として、財務三表の再認識は、企業の強みや弱みを見極め、成長性や安定性を判断するための新たな視点を獲得する良い機会となりました。今後は、具体的なケースを通じて各財務表の評価ポイントを整理し、実践的な分析手法を身につけていきたいです。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

データ・アナリティクス入門

数字に秘めた学びのヒント

数字選びはどうすべき? 代表値やばらつきを考慮し、適切な数字を選ぶ重要性について学びました。データには多様な側面があり、集計して表にまとめる際には、その背景となる意味を正しく理解する必要があります。 データの組み合わせは? また、他者のデータを確認する際も、各数字がどのような要素で構成されているかを意識することが大切だと感じました。たとえば、会議室の使用率や社員の出社率といった具体的な数値をデータベースでチェックし、分布図を用いて関連性を見出そうと試みた経験があります。こうすることで、新たな視点から情報を捉えることができました。 情報整理のコツは? さらに、過去の購買履歴をグラフ化するなど、複数のアプローチでデータに向き合うことで、細かい点まで確認し、本当に必要な情報を抽出するプロセスが重要だと再認識しました。まずは細かいデータを収集し、グラフ化やピボットテーブルを活用して全体像を把握し、さらにまとめられるデータは一つの図に統合することで、情報を整理しやすくすることが効果的だと感じています。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

データ・アナリティクス入門

データ活用力を劇的に向上させる方法

平均値の限界を知る データを分析する際、すぐに平均値を出してしまいがちですが、平均値には外れ値に弱いという特性があることを学びました。また、代表値には様々な種類があることも知り、今後データ分析を行う際には適切な手法を選ぶ必要があると感じました。 精緻な分析を行うには? 収支分析では、単純平均を使用する場合と加重平均を使用する場合を考えることで、より精緻な分析が可能になります。こうした分析により、問題点の把握が促進され、より適切な打ち手を考えやすくなると思います。さらに、効果的なグラフを用いることで、分析結果を周囲に分かりやすく説明できるようになるでしょう。 グラフで何を伝える? 分析を行う際には、常に顧客ごと、業種ごと、各部門や担当者ごとに適切な代表値を用いることを意識します。この結果、売上高や利益、経費、所属人数などが異なる場合でも、より合理的な比較が可能となります。また、分析結果を視覚的に分かりやすいグラフにすることで、事業部としての素早い意思決定にもつながると考えています。

「データ × 使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right