クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

クリティカルシンキング入門

資料作成の新しい視点を学ぶ旅

メッセージをどう活かす? 作成者のメッセージを深く理解し、グラフを作成して資料化するスキルを学ぶことが重要であると感じました。単に型にはめたグラフを選ぶのではなく、メッセージとの整合性を意識して見直すことが大切です。これまでの自分を振り返ると、資料とは作成者が伝えたいことを載せるだけではなく、伝える相手を理解し、相手が知りたい情報をわかりやすく伝える視点が重要だと気付きました。 相手に合わせる方法は? 報告や共有資料として、上司のプレゼン資料、部署内の担当報告資料、他部署への実施報告資料、案内資料など、日々の資料作成に活用しています。相手の役職、部署、経験値が異なるため、フォントや装飾、グラフの選択、デザインなどを相手に合わせて考えたいと思います。業務効率の観点でも、見た目がきれいな資料ではなく、目的が達成できる資料を作る意識が大切です。 グラフの選定で迷う? グラフに関しては、業務でグラフを使用する機会が少ないため、グラフの種類やそれぞれの得意とするメッセージについて理解を深める必要があります。調べて学ぶことや、過去の会社の資料などを振り返って読むことが学びにつながります。 資料の目的は何? 資料作成においては、次の手順を考えています。まず、過去の資料作成の手順を振り返り、自分の傾向を見直します。そして、次回作成時には資料で誰に何を伝えるのか、伝えるメッセージは何かを明確にし、それを常に見返せる状態を作ります。最後に、必要なデータを事前に調べ、グラフを作成するなどの準備をして進めます。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

クリティカルシンキング入門

スライド作成の秘訣をマスターしよう!

明確なメッセージの設定 スライド作成において重要なポイントは、以下の通りです。 まず、伝えたいことを明確にすることが最も重要です。誰に何を伝えたいのかをしっかりと定め、それを基にスライドを構成します。また、フォントや色、アイコンは効果的に使用し、視覚的な印象を強化します。 誰にでも伝わる視覚表現 さらに、グラフはデータや表現内容に応じて適切なものを選び、一目でわかるように作成します。相手に考えさせるスライドではなく、誰もが読んですぐに理解できるものを目指します。 課題解決のためのステップ 営業で抱えている課題を解決するためのプレゼン資料を作成する場合、まず現状の課題を明確にし、将来的なゴールを設定します。その上で、ゴールを達成するための施策やツール導入を順序立ててスライドにまとめます。こうすることで、抽象的な内容を避け、具体的な数値を用いたグラフも織り交ぜることが求められます。 データ収集と構成の順序づけ 最初に現状把握を行い、課題認識をすることが必要です。これには、課題に関連するデータの収集が含まれます。スライドの組み立てにあたっては、まずこの提案で何を伝えたいのかを明確にし、それを基に順序立てて構成します。伝えたい内容が明瞭に伝わるよう、グラフやアイコンを適宜活用しながら作成を進めます。 フィードバックを活かすには? 最後に、完成したスライドを評価してもらう機会を設けます。部内などのフィードバックを受けることで、より洗練された資料を完成させることができます。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

データ・アナリティクス入門

データで綴る学びの軌跡

プロセスはどう進む? 分析を進める上で、プロセス・視点・アプローチの3つの要素が大変重要であると感じました。プロセスでは、まず目的を明確にし、次に仮説を立て、データ収集を行い、最後に検証を実施します。 視点でどう捉える? 視点に関しては、結果への影響度(インパクト)、特徴の理解(ギャップ)、一貫した変化(トレンド)、データの分布(ばらつき)、および法則性(パターン)など、複数の切り口でデータを捉えることが大切だと思います。 数式で理解できる? また、グラフや数字、数式を使って分析すると、視覚的にも理解しやすくなります。具体的には、単純平均、加重平均、幾何平均、中央値、標準偏差といった数式を用います。特に標準偏差は数値が大きければばらつきが大きいことを示し、小さい場合はデータが密集していることを意味します。 販売データはどう見る? 販売データを扱う際には、まず代表値と分布から傾向を掴むことが重要だと痛感しました。大量のデータがある場合、グラフを活用してばらつきを確認することにより、より精度の高い分析が可能になると考えています。また、平均値と中央値を比較することで、全体の状況を把握しやすくなるとも感じました。 業務でどう活かす? 実際の業務では、単純平均、加重平均、幾何平均、中央値、標準偏差など、どの指標を使用するのが最適かは、経験と慣れに依存する部分があります。今後も多くのデータ分析に取り組むことで、自分自身のスキルとして確立していきたいと思います。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

クリティカルシンキング入門

イシューを明確化して成果を最大化する技法

課題発見のための具体的手法は? 本質的な課題を発見するためには、対象を分解し問題点を明らかにし、その対策を検討することが重要です。その際、グラフなどを使用して問題点を的確にあぶり出すことが効果的です。手当たり次第に検討するのではなく、焦点を絞ることが求められます。 イシューの重要性を理解 イシューを明らかにし、常に意識することも重要です。打合せなどでは、まずイシューの共通認識を持つことが必要です。これは基本的なことですが、実践するのは難しいです。打合せの目的(イシュー)を共通認識として持つことが不可欠です。 業務を進める上でも、まず自分の中でイシューを明確にし、それを持ち続けることが大切です。必要に応じてイシューを修正する際も、その目的を明確に意識し続けます。 他社データの活用法とは? また、同業他社や好きな会社のデータを見て分析し、自分の仕事に活用することができます。考えるための題材は自分の仕事以外にもたくさんあり、例えば同業他社の有価証券報告書などからも情報を得ることができます。 打合せでは、その目的(イシュー)を最初にアジェンダに記載し、全員が共通の認識を持てるよう確認することが重要です。また、新聞や書籍などのグラフに注目し、その場合に適したグラフを選ぶ視点を持つことも有益です。 さらに、新聞記事や自分の業務を進める上で、常に目的やイシューを意識しながらメモを取ることが有効です。これにより、意識的に課題や解決策に集中することができます。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

「データ × 使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right