データ・アナリティクス入門

着実な一歩が未来を開く

データ分析で何が分かる? 問題解決にあたっては、ステップごとにデータを分析しながら進めることで確実な解決が可能となります。また、様々な仮説を立てて検証することで、多角的な視点を得ることができ、この組み合わせにより、データ分析をより効果的に活用し、最適な解決策を導き出すことができます。 収集条件は統一できる? 自分でデータを収集し、複数の仮説を検証する場合、それぞれの仮説に対応したデータ収集の条件を可能な限り統一することが重要です。既存のデータを比較する際も、比較したい条件以外の要素を揃えた状態で行わなければ、得られる比較結果が本来の目的と乖離してしまいます。 集中が続かない理由は? 一方で、私自身は視野が分散しやすく、さまざまな仮説を考えるのは得意なものの、目的に向かって確実に進むことが苦手だと感じています。そのため、常にゴールへの道筋をステップに区切って考え、1つ1つを着実にクリアしていくことを心掛けるようにしました。これにより、自分の特性を活かしながらも、確実に問題の解決へ向かうことができると実感しています。 目標達成法はどうする? 今後は、さまざまな業務に取り組む前に、まず解決すべき最終目標とそこに至るステップを明確にし、その上で各ステップで仮説を検証しながら前進していくことで、着実に成果へと導いていきたいと考えています。

データ・アナリティクス入門

仮説と仲間が拓く未来

どうやって仮説を立てる? データ分析を始める際、いつもありがちな仮説で立ち止まっていた自分に対し、3Cや4Pといったフレームワークを活用して思考を整理し、仮説を立てる方法を学びました。仮説は単に立てるだけではなく、その検証も極めて重要であり、さらに施策を講じる際には顧客目線が不可欠であることを改めて認識しました。 意見交換は必要? また、仮説やアイディア出しの過程で、当たり障りのない意見だけではなく、否定的な意見や斬新な発想を取り入れることも必要だと感じました。一人の意見では偏りが生じやすいため、同じ目的に向かって柔軟な視点を持つ仲間との意見交換が、より良い施策を生み出す鍵になると実感しました。 基本指標をどう見る? さらに、Webマーケティングの基本的な指標であるPVやUUなどの知識は、今後欠かせない領域であると認識し、引き続きツールなどを活用した学習を進めていきたいと思います。過去にカスタマージャーニーマップを作成した経験から、自分とは異なる属性の視点を取り入れる重要性を痛感し、今後はより多様なシチュエーションを考慮して視野を広げる努力を続けたいと考えています。 集計分析で何が見える? また、クロス集計分析の手法は、現在携わっているアンケート業務において大いに役立つと感じ、今後も定量的な面から分析を深堀していくつもりです。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

クリティカルシンキング入門

一文字で差がつく伝達術

情報視覚化はどうする? 情報の視覚化と見せ方の工夫について、具体的な手法を学びました。グラフや文字の装飾などを取り入れることで、情報を丁寧に作り上げる必要性を実感しました。特に、プレゼンテーション資料のタイトルに1文字を加えることで、伝えたいメッセージがより明瞭になる点が印象的でした。 レポートはどう伝える? また、レポート作成時には、必要な情報を取捨選択して読み手が情報を探す手間を削減することが大切であると学びました。チーム内で分析結果を共有する資料作成に際しては、実況中継のようにならずに自分のメッセージを明確に伝え、取り扱うデータがメインメッセージとしっかり合致しているかを吟味することがポイントです。視覚的にも分かりやすく整理することで、閲覧者にとって必要な情報がすぐに理解できるレポートに仕上げる工夫が求められます。 広報文はどう伝える? さらに、メルマガの配信や社内広報のメールにおいても、読み手の興味を引くためにタイトルや重要箇所の見せ方に工夫を凝らすことが必要です。こうした実践を通じ、データ分析レポートでは多角的な視点からデータを検証したうえで、メインメッセージを決定し、サポートする情報を厳選する姿勢の大切さを学びました。情報整理の過程で、伝えたい意図がよりクリアになるように微調整を加えることで、より伝わりやすい資料作成を目指していきます。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

課題発見!データが導くヒント

データ分析は何に使う? まず、データ分析は単なる数値の羅列に意味を見出すのではなく、特定の問題を解決するために行うものです。いきなりあらゆるデータを収集しても、どの部分に着目すべきかがわからず、効果的な結果に結びつきにくいでしょう。したがって、まずは問題を明確に定義し、大まかな分析から始め、論理ツリーやフローチャートなどを活用してデータを分解します。この際、解決策に結びつくような意味のある分け方を意識し、比較対象を明確にすることが大切です。 問題解決はどう進む? また、問題解決のプロセスにおいては、「何が問題か(What)」、「どこに原因があるか(Where)」、「なぜその原因が生じたのか(Why)」、「どうすれば解決できるか(How)」という4つのステップに沿って、仮説をいくつか立てながら、検証を進めることが求められます。分析の際は、複数の仮説を網羅的に洗い出し、分析フレームワーク(3Cや4P、5フォース、PESTなど)を活用するのが有効です。例えば、ある期間の売上減少については、内部要因(販売店の比率、広告費、性年代別の購入者率、リピート率など)と外部要因(気温、感染症の流行、訪日外国人の数など)の双方を収集・比較し、ギャップが大きい部分に絞って深堀りを行います。最終的には、複数の解決策を挙げ、判断軸に基づいて最適な対策を選定するという流れになります。

データ・アナリティクス入門

数字の裏側に潜む物語

分ける理由は? 先日のライブ授業では、ワークを通じて「分けて見ること」と「比較すること」の重要性を学びました。データを全体で捉えるのではなく、商品や期間ごとに分け、前の商品と比較することで、これまで見えにくかった課題や傾向が明らかになる点を実感しました。さらに、分析の過程で仮説を立て、その仮説を検証するためにデータを集めることで、課題の原因がより明確になり、具体的な対策を講じやすくなると感じました。 分類で見える? これまでの生産業務では、全体の実績や結果だけを見て対応していた面もありました。しかし、今後は部門別、商品別、時期別などにデータを細かく分類し、前年比や他部署との比較も取り入れることで、具体的な改善点を抽出できると考えています。 仮説で検証する? また、数値の変動に対して「なぜこのような結果になったのか」という仮説を自分なりに立て、実際のデータや現場の声を確認して検証するプロセスを習慣化することで、業務改善に向けた提案の質を高めていけると考えています。 成果を活かす? 今回の授業で得た知見を生かし、今後は実績データを部門別や月別に分類し、前年同月比や他部署との比較を通して課題の可視化を進めていきます。加えて、数値の変化に対する仮説の検証を、追加のデータ収集や現場のヒアリングを通して行い、具体的な改善策につなげていくよう努めます。

クリティカルシンキング入門

巧みに操るグラフと文字のコツ

文字配置の工夫は? グラフ内の文字は、適切な大きさやフォント、色を工夫して配置することが重要です。やりすぎると伝わりにくくなる場合があるため、文字の大きさ、量、配置にも十分な注意を払いながら作成しています。 グラフはどう使う? 時間の流れを表す場合は縦棒グラフ、連続する事象を示すときは折線グラフ、データの割合を表現する際は円グラフを使用するなど、相手が何の情報を求めているかを考慮してグラフを使い分けています。また、スライド作成時は、情報を右から左へと配置し、見る側がグラフを探す手間を減らすことも意識しています。 グラフと文字の違い? グラフの種類によって与える印象は大きく変わるため、見せるグラフが効果的かどうか、または文字や言葉のほうが伝わりやすい場合があるかどうかを、状況に応じて柔軟に判断するよう努めています。これまで無意識に行っていたフォント選びやグラフの種類の選択についても、今後は意識的に取り組むよう心がけています。 伝わる文章は何? まずは相手に伝わる文章作りを最優先とし、アイキャッチの工夫や内容の練り込み、検証を重ねることで、より丁寧なスライド作成を実現していきたいと考えています。今回学んだグラフの活用法は、月次や年間の売上報告、新規および既存顧客の来店者数の推移作成など、実際の業務にもすぐに役立てることができると感じています。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

データ・アナリティクス入門

仮説から広がる学びの扉

仮説の重要性を感じる? 仮説とは、ある論点に対する、または不明な事柄に対する仮の答えのことです。仮説を立てた上で、その検証のためにどのようなデータ収集が必要かを考えることが重要です。 データ収集はどう考える? 具体的には、仮説を立てる際には比較する指標を意図的に選び、平均や標準偏差の算出など、一手間を惜しまない努力が求められます。また、必要なデータが不足している場合は、誰にどのように情報を求めるか、どんな手法で収集するかを検討し、反論が出る可能性も想定して複数のデータ収集手段を準備することが大切です。 複数仮説で探る方法は? さらに、問題箇所の特定には、一つの仮説に固執せず、複数の仮説を立てることが必要です。これにより、各仮説同士で網羅性を持たせ、より広い視野で問題にアプローチできます。頭の中だけで考えるのではなく、視覚的に仮説を書き出すことで、検証作業の効率をさらに高められると感じています。 経験と共有の大切さは? 実務経験が積まれるほど予想は立てやすくなり、その予測に基づいたデータ分析に陥りがちですが、今後はまず複数の仮説を明確に書き出し、漏れなく網羅することを意識したいと思います。また、上司やメンバーとも仮説を共有することの重要性を認識し、共通の意見を持って話し合うことで、コミュニケーションをより円滑に進めたいと考えています。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

「データ × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right