クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。

データ・アナリティクス入門

目標設定で描く成功の道

目標設定の極意は? まず、結論のイメージを明確に持ちながら取り組むことの大切さを実感しました。一度目標を定めることで、問題がどこにあるのかを細分化し、解決に向けた要素を順序立てて洗い出すことができると感じています。また、単に分析するだけでなく、考え得る原因を幅広く仮説として立て、実際に検証するプロセスが非常に有効だと考えています。 データ収集の工夫は? 次に、データ収集の段階ではアウトプットとなる最終形を念頭に置き、必要なデータが不足している場合は柔軟に追加を行うことが重要だと思いました。集めたデータに対しては、有用な情報を引き出せるようどのように加工するかを常に考える姿勢が、最終的な成果に大きく寄与すると実感しています。 進捗管理の秘訣は? また、プロジェクトの進捗管理においては、月次レポートの形式や要素を特定する際に、学んだ知識を活用しながら、問題点の洗い出しや原因分析を進めたいと考えています。プロジェクトごとに必要な情報を細分化し、検証することで、より的確な進捗管理が実現できると思います。さらに、可能性のある原因については一つに絞らず、複数の仮説を立てながら網羅的に検討することが効果的だと感じています。 加工方法はどう? 最後に、データ加工に際しては、どのような方法が最適であるかを検討しながら進める必要があると学びました。これまでの学びを今後の実践に活かし、より実践的で効果的なプロジェクト管理に取り組んでいきたいと思います。

データ・アナリティクス入門

実験と観察で見つける自分の一歩

検証方法の違いは? 過去の学習では、「データをつくって検証するアプローチ」(実験科学的)と「データを取得して検証するアプローチ」(社会科学的)の二種類に整理していました。しかし、デジタル領域の発展により、社会科学的なアプローチにも実験科学的手法が導入可能となり、ABテストが実施できるようになりました。いずれの方法も最終的な目的は「最善の行動をとること」であり、状況に応じて観測による検証と実験による検証の有効なステージを意識することが重要です。 現場での検証は? 現状の業務では、実験による仮説検証が難しいケースが多いですが、人事分野ではトライアルとして人事制度の導入が行われることがあります。また、業務改善ツールの試験導入時に導入群と非導入群に分けることで、ABテストのような検証手法が活用される可能性もあります。一方、ある情報発信においては、2通りの作成が現実的な工数を超えることから、デジタル技術を活用する方法が望ましいと考えられます。 原因検証はどう? 原因探索において重要なのは、単にABテストを行うことではなく、原因仮説を体系的に(MECE)導出し、それぞれを迅速に検証するプロセスです。たとえば、特性要因図や5 Why分析を用いて複数の原因仮説を立て、適切な方法でスピーディーに検証していくことが求められます。特に人事分野では、複数の要因が絡むため、一つの真因に固執せず、各要因の寄与を考慮しながら柔軟に仮説検証を進めることが大切です。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

データ・アナリティクス入門

仮説が拓く自分発見の旅

仮説はなぜ重要なの? 仮説を持つことは非常に重要です。物事を早急に結論づけるのではなく、複数の視点から検証し、多角的に物事を捉えることが大切です。 結論への仮説は? 具体的には、結論に向けた仮説と問題解決のための仮説の二種類を考えます。前者は提示された論点に対する仮の答えとして、後者は実際に問題を解決するための道筋として役立ちます。 仮説の意義とは? 仮説を考える意義は大きく三点あります。まず、仮説を立てることにより検証マインドが向上し、説得力のある議論が展開できるようになること。次に、問題に対する関心や意識が高まる点。そして、仮説をもとにした検証プロセスが、最終的な結論に至るスピードアップに寄与することです。こうした仮説検証のプロセスには、アンケートやテストなどの具体的な手順を踏むことが有効です。 なぜ多角的に検証する? また、クライアントのブランドリフトの結果や売上の変動を見た際に、すぐに結論を出さず、なぜその結果が生じたのかを複数の切り口で検証していく必要があります。検証の際は、過去、現在、未来という時間軸に沿って仮説の内容が変化する可能性も考慮することが重要です。 検証の手順はどうなる? まずは情報やデータを収集し、各因子が売上や認知にどのように影響したのかを多角的に検証してください。その手段として、相関分析やヒストグラム、グラフなどによるデータの可視化、さらにはインタビューや簡易調査の実施が効果的です。

データ・アナリティクス入門

仮説で切り拓く学びの軌跡

仮説の基本的な意味は? 仮説とは、ある論点に対する一時的な答えを意味します。仮説を立てることで、説得力が向上したり、日々の課題に対する意識が高まったり、業務のスピードアップにもつながります。仮説には、結論に向けたものと、問題解決のための「どこで」「なぜ」「どうやって」といったステップに基づくものがあります。また、時間の経過により仮説の内容が変化することも考えられます。 仮説検証はどう進む? 仮説を構築する際には、まず複数の仮説を立て、各仮説が網羅的であるかを確認することが重要です。思いつきや直感、単一の数字だけで決めつけず、様々な切り口やフレームワーク(たとえば4Pなど)を用いて検証することが求められます。さらに、必要なデータが何か、どこにあるかを探りながら、証明可能なデータやアンケート、インタビューなどを通じて仮説を補強することも一つの手段です。 過去経験はどう活かす? これまでの経験や目の前の数値だけに頼る傾向がありましたが、初めに様々な可能性を洗い出しておくことで、全体のスピードアップや説得力が大幅に向上することを実感しました。また、3Cや4Pといったフレームワークは、実際の業務でどのような視点で分析を進めるべきかを検討する上で有効であると理解できました。調査依頼を受けた際には、目的に応じた適切な指標を考え、複数の仮説を立てることで、分析の軸を明確にし、必要なデータの所在を把握していくことが大切だと感じています。

データ・アナリティクス入門

ボトルネックを見える化するプロセス分析の力

プロセス分解で何が見えた? プロセス分解を通じて問題の原因を明らかにすることが非常に印象に残りました。実際には、ある程度理解しているつもりになってしまうことが多いため、この方法にはハッとさせられました。プロセスを分解し、フェーズ毎の定量データを比較することで、ボトルネックが見えることがわかりました。特に採用プロセスとの親和性が高いと感じました。 A/Bテストの限界を考える A/Bテストについて、一要素ずつ検証を行う方法が紹介されましたが、実際には一要素だけで結果が大きく変わることは少ないのではないかと疑問に感じました。 採用データの深掘りが重要 採用プロセスや学生の動向を分解し、どの段階で歩留まりが多いのか定量データを用いて検証していきたいと感じました。また、顧客の採用ホームページを作成した際、その後どのくらいの人がサイトを訪れ、クリックされているのか、実際に応募につながった人数(コンバージョン率)についても調査していきたいと思いました。 来年の採用戦略とは? さらに、顧客企業の採用プロセスを分解し、プロセス毎の参加数、辞退数、新規流入数などのデータを検証することが必要だと感じました。ボトルネックの原因を考えた上で仮説を立て、学生の志向性や市場全体の動きと比較することが重要です。その上で、来年の採用に向けてどのような行動を起こす必要があるかを考え、すぐに軌道修正ができる場合は速やかに行動に移したいと思います。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

マーケティング入門

顧客の心をつかむ学びの秘訣

自社の強みとは何? ヒット商品を生み出すためには、自社の強みを理解しそれを活かすことが大切です。全く異なる業種の商品を作ろうとするのは難しいため、競合に勝つためには自社の強みを活用した発想が求められます。 ニーズとウォンツは何が違う? また、顧客の欲求には「ニーズ」と「ウォンツ」の2種類があります。ニーズは顧客自身が欲しいと認識している、もしくは解決したいペインポイントに対してお金を払うという欲求です。一方のウォンツは、顧客自身が何を欲しているかを明確に認識しておらず、しかし新しいプロダクトやサービスの可能性がそこに眠っていることがあります。 ウォンツ発見のヒントはどこに? ウオンツを見つけ出すためには、カスタマージャーニーの研究が必要です。顧客が普段どのような生活をしているのか、どのようなペインポイントを抱えているのかを明らかにするために、生活密着型の調査や深掘りするインタビューが有効です。特にエンタメ業界では、視聴者がコンテンツを消費する理由に明確なニーズがあることは少なく、そのウォンツを探し当てることがヒットコンテンツを生み出す鍵となります。 視聴行動は何を示す? そのためには、視聴のパフォーマンスデータや視聴者の選択行動データを観察し、それがカスタマージャーニーにどう結びつくのかを検証することが重要です。視聴者がどのような刺激に反応してコンテンツを選択しているのかを探ることが、次のステップとなるでしょう。

「データ × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right