データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

データ・アナリティクス入門

内省の力が未来を創る

内省はどう進める? 内省的観察については、仮説検証型、行為一体型、外部フィードバック型の3つのアプローチがあることを学びました。実務では仮説検証型に偏りがちですが、変化の激しい現代においては、状況の変化をとらえながら行動と連動して内省を進める行為一体型が重要だと感じました。 学習動機をどう捉える? また、学習動機に関しては、ある理論モデルに沿って内発的な動機と外発的な動機を考えることの意義を学びました。具体的には、内側に起因する充実思考、訓練思考、実用思考と、外側に起因する関係思考、自尊思考、報酬思考という区分に基づいており、チームメンバーそれぞれの内発的動機づけをより一層支援する必要性を感じました。特に、評価目標に含まれていない業務に対しても、その必要性を相手の立場に立って理解してもらえるよう説明することが大切だと思います。 外発動機の見える化は? さらに、外発的動機については、データ分析の結果などを可視化した資料をより多く共有することで、目的に即した行動や目標の具体的なブレイクダウンを個々にサポートする重要性を実感しました。新しい指標を取り入れるなど、自身の行動変容やマインドセットの転換にも積極的に取り組んでいく必要があると感じました。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

データ・アナリティクス入門

データをビジュアル化して誤認を防ぐ方法とは

前提を間違えずに検証するには? 平均年齢30才という言葉から、勝手に30才前後が多いと解釈してしまいました。仮説を立てて検証する際にも、前提を間違えると意味がないことを実感しました。データをビジュアル化することで、事実を正しく把握しやすくなり、様々な視点を得られることが体感できました。この誤認しやすい傾向を忘れず、丁寧に事実を把握することを意識したいと思います。自分の単純に判断しやすい癖を改めて感じました。 予測はどのように立てるべき? グラフを作成する前に予測を立ててみることも重要です。事前に予測することで、想定と現実とのギャップを見つけやすくなり、課題箇所を把握しやすくなります。また、作業手順に意識を向け、グラフ作成時には特徴的な箇所を意識することも大事です。今まであまり意識してこなかった手順を意識し、ステップを可視化して実施することに努めたいと思います。 ビジュアル化がもたらす効果は? 仮説検証は、正確な事実把握ができて初めて成り立つため、まずは身近な課題や過去の課題から事実把握のビジュアル化を実践し、確認していくことが大切です。正しい事実把握の習慣化を努め、課題を把握しやすいデータ加工とビジュアル化を念頭に作業を意識的に進めていきます。

デザイン思考入門

言語化で磨かれる提案の極意

課題を明確にできた? IRコンサルティング業務では、これまでお客様の課題を明確な言葉で定義していなかったため、今回学んだ手法を通じて、お客様の状況や課題を整理できたと感じています。また、カスタマージャーニーはBtoB事業においても十分に活用できると実感しており、早速試してみたいと思います。 実践はどう進む? 実践については、4週目以降に取り組む予定です。お客様の課題を言語化することで、認識のずれが減少し、提案の精度が向上すると考えています。同時に、BtoBにカスタマージャーニーを適用することで、意思決定プロセスが可視化され、より効果的なコンサルティングが期待できると感じました。 分析法は何が鍵? また、以下の点にも留意しながら進めます。まず、定性分析は仮説の立案を目的とし、定量分析はその仮説の検証を目的とします。定性分析では、コーディングによってデータを1次コードから3次コードへと分類し、体系的に整理します。さらに、ユーザーの暗黙知を把握するためには観察を、形式知を引き出すためにはインタビューを実施し、それぞれを適切に使い分けることが重要です。最後に、ペルソナを具体的に設定し、カスタマージャーニーを描くことで、実践的な分析を目指していきます。

クリティカルシンキング入門

データが示す問題解決のヒント

データの切り分けは? データから課題を抽出し、論点を明確にする構造的思考力の重要性を改めて認識しました。これまでの可視化されたデータ作成方法を復習しながら、「問題→要因分析→解決策提案」という一連の流れが実践的であると実感しました。特に、データの分類軸の切り方によって見えてくる内容が大きく変わる点は、今後の業務において有効に活用していきたいと考えています。 担当業務の見直しは? 私の担当する業務は、直接的に顧客データや売上データを扱うものではなく、事業やプログラムの実施および運営が中心です。現在、開始から3年目を迎えるプログラムのさらなる拡充を目指し、これまでの参加者の所属先、部門、所在地、業種などの特徴や、分野別の分析、そして他の類似プログラムとの比較など、さまざまな視点からの検証を進めたいと思います。 改善方法はどうする? また、自身が携わるプログラムの進捗や課題について、これまで限られた範囲で数値化するに留まっていましたが、今後は問題点を明確にし、MECEを意識した分類とグラフ化によって、限られたスペースにより多くの情報を効率的に伝えられる方法を再検討する所存です。作業中に方針がブレないよう、常に意識を高く保ちながら取り組んでいきます。

データ・アナリティクス入門

分けて比べる!分析の真髄

4段階は何を示す? 4段階の仮説→検証→改善策立案を、具体例を交えて説明していただき、各段階での重要なポイントが明確になりました。自己流や独学で試行してきた私にとって、とてもありがたく、有意義な時間となりました。 分け比べで何が分かる? 初回から印象に残ったのは「分けて比べる」という考え方です。繰り返し実践することで、分析の本質を実感できるようになりました。 データ選択はどう考える? また、社内で適切なデータを選び出す際には、データが目指すべき姿を示しているのか、あるいはデータ自体が何を表しているのかをしっかりと見極め、指標として活用する重要性を感じました。眺めるだけでなく、常に目的意識を持ってデータに向き合うことが大切です。 自社データ整備はどう? まずは自社データの整理を行い、そこからカテゴライズやインデックス化を推進し、目的別にすぐ利用できる状態を整えたいと考えています。また、データの整え方や代表値の種類、グラフ化、ピボットテーブルの加工方法など、基礎的な手法を部内にレクチャーすることで、自分自身の理解不足や弱点を洗い出し、互いに教え合いながら、数ヶ月後にはみんなが同じ目線で分析結果を議論できる環境を作り上げたいと思います。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

「データ × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right