データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

戦略思考入門

広がる視野とフレームワーク活用の力

顧客の声をどう活用する? 営業現場で実際に寄せられる顧客の声には大きな影響力があり、似た経験や考えを持つ相手の意見に賛同しがちです。しかし、それに引っ張られるだけではなく、顧客を取り巻く環境や変化、外部環境にも目を向けることが重要です。そこでPESTや3Cなどのフレームワークを活用することで、幅広い視野から情報を整理し、分析結果をもとに優先順位を決定することが必要であると感じました。 メディカルプランにフレームワークを使える? また、今後発売する製剤のメディカルプラン作成にも、同様のフレームワークを活用できると考えています。10年後のブランドビジョンを達成するために重要な成功要因(KSF)を設定する際、PESTを活用して業界の状況を把握し、3Cを用いて市場、顧客、競合、自社を分析する必要があります。さらに、SWOTを用いることで、現在の外部環境や疾患領域における自社製品の立ち位置を明確にし、製品で解決できるアンメットニーズを見極めることができます。分析された情報や顧客、患者から得られた声について議論を重ね、戦術に落とし込んでいくことが求められます。 競合の情報収集はどう進める? 具体的には、疾患領域の発生率や患者数の動向診断、治療法の変化について、情報の偏りがないよう広く情報収集を行います。特に、発生率や患者数などの定量データは、客観的なデータ収集を徹底します。また、新しい治療に関しては、専門家からの意見を収集することで、論文になっていない定性的情報も参考にします。 さらに、競合製品の情報収集として学会発表や論文からの基礎、臨床研究を行い、競合の戦略を分析します。そして、競合の立場になってPEST、3C、SWOTを活用し、キーとなる戦略を理解します。自社製品においては、競合製品に勝っている点や劣っている点について、基礎研究や臨床研究を通じて対策を講じ、関連部署と連携して方針を決定していきます。

戦略思考入門

データで切り拓く挑戦の未来

客観データで説得? 今週の学習では、課題解決において感情論ではなく、客観的なデータに基づく論理的な分析と、それを「人に伝わるように」表現することの重要性を実感しました。タクシー業界のデータ分析を通じ、漠然とした問題を具体的な数値で把握し、多角的に解決策を検討するプロセスを学び、複雑な状況下でも本質を見抜き、説得力ある提案につなげる力が不可欠であると再認識しました。 外食業界で活かす? さらに、今回の学びは外食業態での仕事に直結すると感じています。従来は感覚に頼っていた新メニュー開発や既存メニューの見直しを、POSデータや顧客アンケートを活用して売上低迷の原因と潜在ニーズを客観的に特定するアプローチに変えます。たとえば、特定の時間帯に売れ行きが低迷しているメニューがあれば、その原因を徹底的に追求し、価格や食材、提供方法の見直しなど、多角的な対策を講じることで収益性向上を目指します。 集客戦略はどう? また、店舗の集客戦略にも学んだ手法を応用できます。近隣の人口構成や競合店の情報を分析することで、ターゲット顧客を明確にし、若年層にはSNSプロモーション、高齢者層にはデリバリーサービスといった、ニーズに即した戦略的な広告・宣伝活動を展開することが可能となります。 実践計画の工夫は? これらの学びを実践するため、以下の具体的な行動を計画しています。まず、毎日終業後にPOSデータをメニュー別、時間帯別、客層別に分析し、特に大きな差異が見られる点についてその原因を徹底的に追究する習慣をつけます。次に、週に一度、近隣の競合店のメニュー構成や価格、プロモーション情報をオンライン等で確認して、自店との比較分析を行います。さらに、月に一度、主要メンバーと共に売上データや競合情報を共有し、論理的な意見交換を通じてデータに基づく課題解決策を議論する「課題解決ランチミーティング」を実施します。

アカウンティング入門

カフェ事例で解く利益と価値の秘密

顧客価値はどう捉える? カフェのケーススタディでは、「顧客への価値を考える」という現業の企画・マーケティング要素が盛り込まれており、イメージがつかみやすかったです。この事例を通して、企業が提供する価値と損益計算書の読み方を意識するようになりました。 利益はどう違う? また、「利益」と一括りにすると、どこで利益が出たのか、または損失が生じたのかが分かりにくいと感じました。5種類の利益(売上総利益、営業利益、経常利益、税前当期純利益、当期純利益)の違いを学ぶことで、それぞれの意味が理解できました。 複数事業の見方は? 今回の事例はカフェという単一事業のみを扱う企業に焦点を当てていますが、実際には複数の事業を展開する企業も多いのではないかと疑問に思いました。財務三表の中では、PLは基本的に企業ごとに一つですが、複数事業で構成される場合、損益計算書の見方や事業(部門)ごとのPLの存在についても気になったので、復習時に詳しく調べたいと思います。追って、各部門ごとに作成される「部門別損益計算書」が存在するとの情報も得ました。 競合と自社はどう違う? この学びは、企画立案時の事前調査や他社の分析と比較に活かしたいと考えています。企画段階では、すでに決まった予算の範囲内で進めることが多いですが、競合他社のPLを比較することで、どこで利益を生み出せそうかを意識し、費用投資を検討する視点が身につきました。同時に、競合他社とは異なる、自社ならではの提供価値を大切にしていくことも改めて認識しました。 業界特性はどう読む? 今後は、競合他社のPLの確認と比較、さらには小売や製造など異なるビジネスモデル間でのPL比較を通して、それぞれの業界特性や提供価値を考慮しながらPLを見る習慣をつけるとともに、部門別PLがある企業と、1つのPLに集約される場合との違いについても確認していきたいと考えています。

データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

戦略思考入門

フレームワークで広がる実践力革命

なぜ講座が有益? 今回の講座を振り返ると、単なる知識のインプットにとどまらず、実際に使えるスキルへと昇華させることの重要性を実感しました。講座では、以下の点に重点を置いて学習しました。 どう分析すべき? まず、戦略を考える際には、いきなり直感的に行動を決めるのではなく、自社を取り巻くビジネス環境、競合他社や周囲の動向、自社の強みなどをしっかりと分析する必要があるという点です。次に、先人の知恵であるフレームワークを活用することで、情報を体系的に整理し、抜け漏れなく確認することが可能になる点を学びました。また、施策の内容を検討する場合も、VRIOなどのフレームワークを用いて、その施策が意味を持ち、差別化が図られ、持続的に優位性を保てるかどうかを総合的にチェックする必要性を理解しました。 どの行動が必要? これらの学びを自分のスキルとして定着させるため、以下の行動を継続していきたいと考えています。まず、論理的思考力を高めるため、思考のフレームワークに関する知識をさらに深め、書籍や動画学習など複合的な学習方法を取り入れていきます。また、知識を体系化するために、組織内のミーティングで学んだ内容を発表し、言語化する機会を設けることにも努めます。 どう戦略を練る? また、自分で戦略を立てる際は、外部・内部の環境分析や施策内容の検討により、ロジカルな判断ができるようになりました。選択した施策や採用しなかった要素についても、明確な根拠を説明できるようになっています。 どう伝えるべき? さらに、コミュニケーション面では、一連のフレームワークや考え方をしっかりと自分のものにするとともに、部下をはじめとするメンバーにもその考え方を丁寧に伝えるよう努めています。経営層や各メンバーの知識や理解度に合わせた言葉の使い分けを意識し、分かりやすいコミュニケーションを実践していきたいと考えています。

クリティカルシンキング入門

数字が描く未来への地図

グラフ表現はどう見る? データをグラフ化したり、分解や階層化、刻み幅の調整を行うことで、視覚的な効果が明確に表れた点に感動しました。また、属別、変数、プロセスといったMECEの考え方を採用していることは、新たな発見でした。特に、既存顧客と新規顧客のデータ加工により、今後の事業展開におけるプレゼンテーションやデータ分析の資料作成に大いに役立つと感じました。 来店分析の視点は? まず、既存の来店顧客の分析では、居住地、年代、性別という視点から顧客の特徴を可視化しました。これにより、提供すべき利便性や専門性、さらには信頼性を把握でき、商圏のマップ作成や年齢別構成比、性別比率の分析が実施されました。 来店理由をどう評価? 次に、来店理由の分析では、ネット、看板、紹介、口コミといった複数の集客チャネルを評価し、来店時の相談内容も踏まえたことで、各チャネルの有効性や口コミ・紹介によるリピート率の傾向を明らかにしました。 社員満足度の内訳は? また、社員満足度の調査では、匿名のアンケート手法を用い、年代別のモチベーションや福利厚生に対する満足度、職種別の残業比率などを数値化することで、従業員の状況を詳細に把握し、今後の改善につなげる分析が行われました。 在庫管理の効率化は? さらに、薬品や備品の在庫管理においては、在庫回転率のデータ利用や重複作業の削減を通じて、作業の効率化が図られました。 診療アップセルはどう? 加えて、自由診療と保険診療の両面からアップセルの可能性を探る資料も作成され、今後の収益向上の取り組みに寄与する内容となっています。 新規事業展開は何が? 最後に、新規事業開拓に際しては、M&Aや他業種とのシナジー効果の検討を踏まえた資料作成が進められており、全体として包括的なビジネス展開の土台作りに大いに役立つと感じました。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

マーケティング入門

顧客の真意で描く新業務の行方

顧客の本質を探る? 今回の講座を通じて、顧客の表面的な情報だけでなく、その深層にあるニーズや価値に着目する重要性を再認識しました。たとえば、STP分析や4Pなどのフレームワークを活用し、費用対効果を高めることができる一方で、最終的には顧客志向の追求が不可欠であると感じました。顧客の視点で考えなかった場合、どんなにプロモーションに力を入れても、売れ行きが伸び悩んだり、模倣されやすかったりするため、ヒット商品には結びつかないという印象を受けました。 業務移管の本質は? 現在の業務は社内の業務移管がメインとなっているため、移管元の担当者や現場スタッフを一種の顧客と捉え、そのニーズを正確に把握することが重要だと考えています。たとえば、移管前のヒアリング時には相手が抱える課題や求める解決策に注目し、新しいソリューションを提案する際には、イノベーションが広まる要因を意識することが、円滑な業務移管につながると感じました。 どの方針を実行? 具体的には、以下の方針で業務に取り組む予定です。 既存業務の見直しは? ■既存業務において 移管前後で、顧客にとっての痛みや利益につながるポイントがどこにあるかを確認し、痛みがある場合は改善策を検討する。 新規業務の挑戦は? ■新規業務において ソリューション提案時に、イノベーションの普及要因に基づいて、顧客目線でどのように受け取られるかを十分に考慮する. コミュニケーション改善は? ■日々の連絡業務・コミュニケーションにおいて 社内でも情報が過多になり、伝えたい内容が十分に伝わらないことがあるため、マーケティングの視点から以下の点を意識して工夫する。 ・訴求ポイントは2つまでに絞り、過度な情報量によって伝わりにくくならないようにする。 ・表現を丁寧に選び、相手の共感を得やすく、内容が伝わりやすいよう努める.

アカウンティング入門

ビジネスモデル理解から財務分析までの学び

ビジネスモデルと数値の関係は? ライブ授業を通じて、「ビジネスモデルをとらえてから数値を読む」ことの重要性を理解しました。特に、具体的な事例を挙げられた際にはイメージしやすく、しっかりと理解できました。この考え方は、自分が現在理解している業界や業種以外のものを読み解く場合にも有効であり、情報を得るところから始めることが重要だと感じました。 学習プランの再構築は必要? 学習プランについては、予想通りに進めることができませんでした。再度プランを立て直し、生活スタイルに溶け込ませるような計画を作ることが必要だと実感しています。習慣化の難しさを改めて感じました。 財務諸表を判断基準にする意義 部品調達先選定や取引継続可否を判断する場面において、一つの判断基準としてP/L(損益計算書)やB/S(貸借対照表)の結果を取り入れることが有効だと考えました。取引先の状態を把握し(倒産リスクなど)、その情報を関係者と共有することで、次のアクションを迅速に起動できるようにしていきたいと思います。また、自社のP/LやB/Sの読み解きも続けていきたいと考えています。 B/S理解をどう深める? まずは、B/Sの理解度を整理することに努めます。その後、他社のB/Sを読み解き、自分なりの答えをまとめることで理解度を深めるつもりです。財務経理部門の方にも協力をお願いし、理解度をチェックする予定です(P/Lの時と同様に)。次に、取引先のP/Lや B/Sを読み解き、理解の定着を図ります。 学んだ知識をどう活用する? さらに、今回学んだことを共有することも考えています。人へ説明することで新たな疑問点が浮かび、それを解決することで理解力が向上すると期待しています。最後に、実務に取り込むための検討を行います。定期的に触れていかないと忘れてしまうため、実務の中で反映していくことが重要だと思っています。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right