代表値の意義は何?


平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。

計算方法の違いは?


代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。

標準偏差の役割は何?


また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。

業務整理にどう活かす?


このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。
※上記の投稿は、受講生より許可を得て掲載しています。
help icon

ナノ単科とは?

what nano image
実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
H.N
50代 女性
受講科目
データ・アナリティクス入門
モチベーションが上がる

勉強することを長らく忘れていましたが、
若い受講生の姿を拝見し、
一生勉強だなと感じさせられました

avatar
S.T
30代 男性 係長/主任
受講科目
データ・アナリティクス入門
実践につながる わかりやすい 仲間と学び合える

価格、期間、レベル、とにかくジャストサイズだったように思います。
初心者や我流の限界を感じている人にオススメですね。
異業種異職種の人と受講動機をシェアできたのがよくて、「みんな悩み同じなんだな」「自分だけじゃない」という安心と納得感がモチベーションになりました。

avatar
A.N
50代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい

グループワークがあることで、気づきが多い。オンライン講座はたくさんがあるが、受講生の考えなどを聞くことで理解が深る気がします。
3か月間、週1回であれば、なんとか頑張れるのみ魅力です。
勉強はし続けることも大事ですし、仕事にもすぐに実践できる内容が多いことも、受講してとてもよかったなと思っています。

「顧客 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right