戦略思考入門

俯瞰力を鍛える!自社の未来を描く学び

社員視点は限界? 印刷会社のケーススタディでは、3人の社員が会社の課題と対策について討論していました。しかし、社員の視点で物事を捉えることにより、小さな範囲での考えに留まりがちになることに気づきました。社長にプレゼンを行う際には、業界全体を俯瞰し、自社の現状を的確に説明することが求められると学びました。また、主観的な判断も重要ですが、PEST分析、SWOT分析、3Cなどのフレームワークを用いて、客観的に物事を考えるアプローチの重要性を実感しました。こういった方法は、資本主義社会で生き残るために不可欠な考え方であると感じました。 戦略と成長は? 社内でのプレゼンでは、業界内での自社の立ち位置を明確にし、その中でどのような戦略を取るべきか、さらに部署内でどのような改善活動を進めていくべきかを具体的に示すことを実践していきたいと思います。現在、多くの人がAIやDXの導入に注目し、ツールの活用に重きを置きがちですが、ツールだけではなく、それを使用する人間の成長が不可欠です。そのため、「ナノ単科」で学んだフレームワークや理論を活用し、「人へのリスキリング(社会人の学び直し)」を推進することで、社員一人ひとりの労働生産性を向上させていくことの重要性を再確認しました。 議論で視点変わる? 3人の議論では視点が偏っていると感じました。今後、社内の議論の場で、Zoomのブレイクアウトルームを活用し、社員をランダムに割り振って一つのテーマについて考える習慣を取り入れることを提案したいと思います。その後、議論した内容を発表する仕組みを導入し、社員の集合知を集めることで、全社的に俯瞰した意見を引き出せる体制を構築していきます。また、教材をただ見るだけでは理解度が約5%に留まるのに対し、発表を通じて理解度を75%まで高められるという効果を、社内で実践的に活用していきたいと考えています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

戦略思考入門

有限資源が生む無限の可能性

どんな学びがあった? week1からweek5までの学びを振り返り、有限な資源を効果的に活用するためには、まず情報を収集・整理し、自分の判断軸に基づいて本質を見極めた上で優先順位をつけることが有効だと理解しました。今回の学びは、仕事以外にも応用できる点が特に印象に残りました。これまで分けて考えていた部分が、ライブ授業を通してプライベートの目標や趣味にも活かせることに気づき、限られた時間内で計画を立て、実行に落とし込めると感じました。 情報整理はうまくいっている? 日頃から情報収集や整理を行う際には、有限なリソースを意識し、時間をかけすぎないようアンテナを張っておくことが大切です。また、専門の取引先に情報提供を依頼するなど、工数管理を徹底する姿勢も必要だと考えています。 新制度の判断はどうする? 自社では捨てる・辞めるという行為について比較的寛容な面があるため、新しい制度を導入する際には試験導入を行い、実際に期待する効果が得られるかどうかを慎重に判断することが望まれます。判断軸としては、会社の方向性をしっかり把握し、経験則に頼りすぎないことが重要です。不明な点があれば相手と対話し、真意を確認するように努めたいと思います。 ニュースや情報はどう活かす? また、日常的にニュースや他社情報にアンテナを張るとともに、他社の財務諸表の分析を行うことで、内容によっては定点観測し派生する影響も把握できると感じました。さらに、専門知識を持つ取引先との接点を日頃から持つことも、情報の更新に役立つと考えています。 チームの連携はどう取る? 実行後には、捨てる・辞めるという判断もあらかじめ決めておくことで、スピード感を持って取り組むことができると実感しました。さらに、業務開始時にチームメンバーと判断軸を共有し、認識を統一することが円滑な業務遂行に繋がると感じています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

自問自答で磨く本質の力

なぜ言葉で整理? 日常生活でクリティカルシンキングを習得するためには、ただ自己の経験に頼るのではなく、「なぜその考えに至ったのか」「どの目的で主張しているのか」を具体的に言語化することが大切です。問いや課題に対して何度も自問することで、思考の過程を整理し、より明確なアウトプットを目指す必要があります。 本当に客観的? また、自分の思考の癖に気づき、思い込みや直感だけに頼らず、周囲の意見も客観的に捉えることが求められます。常に「本当にそうなのか?」と自問自答し、書き出す反復練習を続けることで、ディスカッションやフィードバックを通じたブラッシュアップが可能となります。 どうやって深掘り? 今週は、表面的な情報や過去の経験に縛られることなく、顧客の動向、市場の状況、そして現状の課題を深く掘り下げることで、物事の本質を見極め、最適な提案や判断ができる思考力を磨くことを目標としています。 隠れた真意は? 所属する部署では、まずお客様が表向きに「必要ない」と示す行動や言葉の背後にある真のニーズや本質的な課題に目を向け、具体的な戦術に落とし込む行動を強化します。次に、常に「なぜ?」と問い、表面的には見えにくい問題を洗い出し、根本原因の追及を行いながら、説得力ある提案をすることを目指します。そして、情報を客観的・論理的に分析し「本当にそれで正しいのか?」を問い続けることで、誤った判断や思考の偏りを防ぐ訓練を重ねます。 前提を再確認? さらに、多様な顧客ニーズや市場変化に対して、過去の成功体験に固執せず、前提条件を再確認する柔軟な考え方と提案力を養うことも重要だと考えています。 何を継続すべき? 最後に、クリティカルシンキングを磨くための日常的な反復練習において、無理なく継続できる具体的なアイディアや実践方法があれば、ぜひ教えていただきたいと思います。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

デザイン思考入門

心と色で拓くビジネスの未来

色で感情は伝わる? まず、自己紹介の際に「今の気分は何色か」を色で表現するというお題に取り組むよう指示された点が印象に残りました。最初は意外に感じたものの、先生から「デザイン思考では物事をビジュアル化することが重要」と説明され、なるほどと納得しました。普段、仕事や私生活でさまざまな表現方法を用いているものの、色で気持ちを表すという発想はあまり意識していなかったため、新鮮に感じました。 デザインはなぜ重要? 次に、「ビジネスプランからデザインへ」というテーマの講義で、改めて気づかされることがありました。ビジネスを生み出す際、市場価値や競合状況、資金繰りなどの分析が重要視されると同時に、顧客そのものやその行動に注目し、顧客体験価値を最大化するアプローチが存在することを学びました。この考え方が、「初めから万人ウケするものは作れない」という現実を実感させ、デザイン思考の価値を感じさせるものでした。 新発想の壁は? 現在、私はSIerに勤め、新たなビジネスプランを考える立場にあります。IT業界では、AIを活用した取り組みが多く見受けられますが、既存サービスについては既に多くのアイディアが出されている状況です。そのため、従来のマーケット分析だけではなかなか新しい発想にたどり着くのが難しいと感じていました。 共感はどこで生まれる? そこで、今回学んだ「人間中心」や「顧客体験価値を最大化する」という視点で、まずは一般企業の従業員の中から特にどの部署・誰に焦点を当て、どれだけ共感できるかを試みることにしました。これまでは、ビジネスを考える際「モノ」ではなく「コト」に着目していましたが、具体的なイメージがつかみにくく、行き詰まりを感じていました。今後は、改めて「ヒト」を重視し、顧客の行動や体験に寄り添いながら、新しいビジネスの可能性を探っていきたいと思います。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

戦略思考入門

選択と集中で業務改革を実現!

心情と冷静な分析のトレードオフとは? 現実では、付き合いの長さや関係性、過去の経緯など多くの要素が絡み合い、心情的に優先度を決めていることがあると気づきました。冷静に分析することで、本当に優先度が高いかどうかを判断していく必要があると感じました。 なぜ取捨選択が重要なのか? 1. 捨てることが顧客の利便性を増す場合がある。 2. 昔からの惰性に流されず、常に新しい意見を取り入れることが重要です。トラブルや環境悪化が改善につながることもあります。 3. 餅は餅屋に任せるべきで、垂直統合のデメリットがメリットを上回ることがあります。思い切って専門家に任せる方が良いです。 新メンバーの意見をどう活かす? これらの選択を実践するうえで、3つの観点は当たり前だと考えがちですが、実行に移すのは難しいことがあります。新メンバーの指摘から多くの気づきを得ることができるため、経験豊富なメンバーだけでなく、新しいメンバーの意見を取り入れる機会を増やしたいと考えています。 業務分担と体制はどう見直す? 具体的な事例や惰性から抜け出す重要性についての気づきがよく表現されています。また、新メンバーの意見を積極的に取り入れる柔軟性も素晴らしいと感じます。思考のプロセスや場面をもう少し詳細に描くことで、更なる改善が期待できるでしょう。 正に今、次年度以降の業務分担や体制を整理しており、惰性で継続している業務がないか見直しています。新しいメンバーの意見は的確で、「選択」の考え方を実感しています。社員が担う業務と業務委託する範囲を明確にし、二重のコストや負担を避けるために整理を進めています。組織を統合し、スケールメリットを打ち出すために一時的に業務が複雑になっていますが、優先順位をつけ、継続すべき業務と見直すべき業務を分類していきたいと考えています。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right