データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

クリティカルシンキング入門

問いが変える未来のカタチ

どんな問いが大切? クリティカルシンキングの講義を通じて、問いの重要性を再認識しました。自分や他者の考えを鵜呑みにせず、常に「本当か」と問い続けることで、従来の経験や考え方の偏りを避け、より広い視点から物事を考える必要性を感じました。 どの問いに向き合う? また、ものごとを深く考える際は、まず「今、どの問いに向き合うべきか」を明確にすることが大切だということが印象に残りました。答えや解決策に飛びつく前に、問題や課題の本質をじっくり捉えることで、正しい判断や効果的な解決策に繋げられると理解しています。 チーム作りで気づいたことは? 私は、チームの管理職として、4月以降の体制構築に取り組んでいます。各管理職やメンバーの意見や課題を参考にしながら、チームの体制作りを進める中で、表面的な意見だけではなく、その背景にある真の課題を捉えることの重要性に気づきました。対症療法に終始せず、根本的な解決へと導くためにも、問い続ける姿勢が不可欠だと考えています。 背景をどう探る? 今後は、各管理職やメンバーの意見に対して「なぜそうなのか」を問い、様々な立場から背景や潜在する課題を分析していく予定です。その上で、分析した課題をイシューとして整理し、管理職間で共有しながら議論を進め、体制構築に活かしていきたいと思います。

データ・アナリティクス入門

平均値の裏側に潜む本当のデータを読み解く

平均値の理解とは何か? データ分析において、平均値という言葉に惑わされ、その中身を詳しく見ることを怠りがちだったことに気づかされました。改めて、目的を無視した代表値の活用が良い分析結果につながらないと感じました。平均値にも加重平均や幾何平均など様々な種類があり、それらの算出方法を学べたのはとても良かったです。 代表値への新たな挑戦 現在、自分が理解したつもりでいる部分が多いと考えています。今後は、他の練習問題にも挑戦し、世の中に溢れている代表値がどのように算出されているのかを更に考えられるように努めたいです。 分析結果をどう伝えるか? データを分析し加工することによって、相手に何を伝えたいのかを明確にし、グラフや代表値の算出を行いたいと思いました。また、公的データでも分かりやすい平均値だけを提示して受け取り手の印象に強く残す手法がありますが、代表値の裏側にあるデータの分布を調査した上で、そのデータから何が言えるのかをしっかり考えたいと思います。 データ加工で心掛けること 以下の点を心がけます: - 加工データの裏側を考える癖をつける - 自分でデータを加工し、伝えたいことが伝わるようにする - データ加工の前に必ず要件定義を行う - 様々な平均値の算出方法について、仕組みや成り立ちを理解する

データ・アナリティクス入門

マーケットの広がりを感じる分析の魅力

データ比較で新たな発見をどうする? 他のデータと比較することで、新たな洞察を見出すことが重要です。分析のプロセスとしては、まず目的を明確にし、次に問いに対する仮説を立て、その後データを収集し、最終的に分析によって仮説(ストーリー)を検証します。 どの分析視点が有効か? 分析における視点としては、インパクト、ギャップ、トレンド、ばらつき、パターンを見ることが大切です。具体的なアプローチとして、代表値(単純平均、加重平均、幾何平均、中央値)やばらつき(標準偏差)を使うことで、データの特徴を理解します。 仮説検証で気づく新たな問題は? 提案する際に、自分の仮説を立証するためのツールとして、これらの手法を使いたいです。仮説には正解がないことから、むしろ仮説が間違っている場合は、実際の状況とのギャップに気づきやすくなり、新たな問題発見につながります。ですので、間違った仮説を立てることも恐れず、仮説の幅を広げたいと思います。 勘と経験を超えて新たな仮説を 長年、勘と経験で仮説を立てていましたが、自分の思考範囲を超えた仮説を立てることで、マーケットの状況を広く知り、新たな問題点に気づけるようになります。また、いろいろなグラフを作成し、自分の仮説に対して一番説得力があるものを比較してみたいと考えています。

クリティカルシンキング入門

多角的な視点で本質を探る思考法

フレームワークは有効? 5W1Hといったフレームワークを活用することで、モレやダブりを防ぎながら、迅速に考えをまとめることができると感じています。また、物事を複数の切り口から分解してみると、表面的には見えなかった本質が見えてくることがあります。一度や二度の分解で結論を出すのではなく、「本当にそうか?」と批判的思考を持ちつつ、別の視点を探ることを心がけたいと思います。 具体例はどう分析? 具体的な活用例としては、アンケート集計結果の分析があります。例えば、性別や年代別、地域別に分解し、さらにクロス集計することで、表面上では分からなかったデータの特徴を発見する可能性があります。また、企業審査における決算書分析でも有用です。売上の増減要因を確認する際に変数分解を行い、事業者の申出内容との整合性を判断することができます。もし整合性がない場合は、事業者が気づいていない点を指摘し、経営アドバイスを行うことができるでしょう。 どう切り口を見出す? 私の役割として、部下が行うアンケート集計の分析結果をレビューする立場にあるため、「別の切り口はないか」という視点を大切にしています。また、別の切り口を見つけた場合、そのことを指摘するだけでなく、分解の必要性やその切り口を採用した理由もきちんと伝えるように心がけています。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

戦略思考入門

フレームワークで広がる戦略の視点

戦略構築で見落としは? 戦略を構築する際に、フレームワークを活用することで見落としを減らせると感じています。代表的なフレームワークとして、3C分析、SWOT分析、バリューチェーン分析などがあります。分析が終わった後は、「整合」を重視して戦略を立てることが重要です。全社的に考えることが求められ、一部門のみで整合がとれているだけでは必ずしも良い戦略とは言えないことがあります。また、短期的に成果を上げても、中期的には見直しが必要な場合もあるため、短期的施策として実施期間を設定したり、見直しの指標を設けたりすることが大切です。 会社状況をどう整理? これまで、自分で会社全体の状況を整理する機会がなかったため、まずは3CとSWOT分析から始めてみたいと考えています。その際、各部門ごとに発表される戦略や目標に関する資料を活用し、それを元に自分なりに1つの資料としてまとめて分析します。この全体像の中から、自分のチームとして何ができるかを考える予定です。 チーム貢献、どう考える? 会社全体および各部門の戦略を分析し、自分のチームがどのように貢献できるかを考えています。再来週には社員全体で今期の中間報告会が予定されているため、それまでに分析を完了し、チームとして事業に貢献できる部分を明確にしたいと考えています。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

クリティカルシンキング入門

データ分析で見える新たな発見と改善法

データをどう視覚化する? データを分析する際には、今ある数字に一手間かけることが重要です。ただ数字を並べるだけでなく、グラフや表に変換すると新しい発見が生まれます。また、比率に変換することで別の角度からデータを見ることができ、さらなる洞察が得られます。 分解の基準は何が有効? データを分解する際には、人、時間、手段などの基準で区切ると分かりやすくなります。例えば、月次や年次の売上分析、SNSのインサイト分析など、数字が明確に示されるものだけでなく、業務の効率化や成果が出なかった場合の原因分析にも役立ちます。 問題の特定と解決策のステップ まず、起きた問題に対して「もれなくダブりなく」を意識し、全体を大きく分けて定義します。その際には、層別分解、因数分解、プロセス分解を用いることが有効です。次に、出てきた項目をさらに分解し、どこが問題点なのかを数字や表で明確にします。そうすることで、問題の箇所を特定しやすくなります。問題が特定できたら、なぜそうなっているのかを考えます。そして、どう解決すれば良いのかを分析から導き出し、仮説を立ててトライアンドエラーを繰り返し、最適な解決策を見つけます。 これらの手法を念頭に置くことで、データ分析がより効果的になり、業務の改善や効率化にもつながると感じました。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right