アカウンティング入門

新しい学びに目覚めたBS分析の楽しさ

BSの基本を理解するには? BS(バランスシート)についての学習が進行している中で、以前はなじみのなかったBSの仕組みや名前の由来を知ることで、親近感が湧き、理解しやすくなりました。BSは左側が集めたお金の使い道、右側がその資金の集め方を示しており、表裏一体の関係です。また、資産の流動性については、1年を基準に流動と固定に分類されます。PL(損益計算書)と同様に、BSも事業内容や戦略が反映されます。 借り入れの影響と注意点 借り入れに関しても、当たり前ですが利子がつくため、慎重に行う必要がありますが、必要な場合もあります。「脂肪が負債」という例えが面白く、BSをCTスキャンに例えると理解が進みます。 自社のBSをどう活用する? まずは自社のBSを分析し、同業他社も確認します。自社では成長への投資がどのようなストーリーを持つのかを考え、自分なりの解釈を深めます。具体的な例としてJRやDeNAを参考にすると良いでしょう。他の受講生の意見にもあったように、自分の家計のバランスシートを見直すことも、身近で面白いアプローチです。 学習習慣を定着させるには? お盆期間を有効に活用し、朝の時間を学習にあてて習慣化しました。自社や同業のPLやBSを分析し、特色や個性を導き出すことに注力します。数をこなして慣れることが重要で、その際には資金の使い道と調達の両面で考えることが大切です。いよいよ、やり始める決心を固めました。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

戦略思考入門

理想のリーダー像への戦略的挑戦

何を達成する? これまでの学習を振り返る演習を行いました。この機会に、これからの自分の理想像を改めて描き直し、その中でシンプルで一貫性のあるリーダーを目指したいと思いました。戦略思考の基礎を再度学び直し、目的を明確にして、それを達成するための最短ルートを設計することの重要性を再認識しました。特に「何を達成したいのか」、「いつまでに達成したいのか」、「なぜそれが必要なのか」といった目的を具体的に言語化することが重要だと実感しました。また、利用可能なリソース、特に人材を最大限に活用することの必要性も理解を深めました。効率的なルートを設計して、より効果的に目標達成を目指したいと考えています。 戦略はどう見極める? 問題を俯瞰し、深掘りを繰り返して分析する意識を持ち続けたいと思います。全体の流れを確認し、そこからイシューを特定し、攻略法を戦略的に立てることを心がけています。イシューの解決から全体の解決に繋げる部分を構築し、その過程で戦略思考を活用していきたいと考えています。また、学んだフレームワークも活用し、規模の経済性を最大限活かせる方法を模索し続けたいです。 学びをどう実践する? フレームワーク活用の習慣化を進め、分析に必要な要素を素早くカテゴライズし、様々な課題に応用する技術を磨いていくつもりです。また、朝礼で学んだことを発表する場を活用し、学習内容のアウトプットを繰り返すことで、理解を深めたいと思っています。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

マーケティング入門

伝わる商売の極意―顧客視点の力

マーケティングの意味は? マーケティングの基礎を体系的に整理することができ、セリングとマーケティングの違いや「顧客志向」の重要性を改めて実感しました。単にモノを売るのではなく、「誰に売るのか」「何を売るのか(どの部分を強調するか)」「どのように売るのか(どのように伝えるか)」の3点を徹底的に洗い出すことが、顧客による価値創造―ヒット商品の実現―に繋がるという理解に至りました。 顧客対応はどう見る? また、商品やサービスの販売に留まらず、他者との関わり全般においてもマーケティングの考え方は十分活用できると感じています。例えば、自身が担当するバックオフィス業務では、社内のやり取りを一種の顧客対応と捉え、ペインポイントやゲインポイントの追及、新しい書式やフォーマットの共有の際に「イノベーションの普及要因」を意識することで、混乱を防ぎ、伝えたい内容がより効果的に伝わると実感しました。特に、今後は「わかりやすさ」と「試用可能性」を意識して取り組んでいきたいと考えています。 分析で何が分かる? また、STP分析、4P、6Rといったフレームワークの型や活用方法、順位付けについて学びましたが、まだ表層的な知識であるため、まずは実際に活用することで理解を深めていくつもりです。新規の移管事業においても、口コミの感情分析などを通してペインポイントの抽出や競合分析にマーケティングのアプローチを積極的に取り入れていく予定です。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

戦略思考入門

戦略的思考で未来を描く

復習と戦略の意味は? 今週は、これまで学んだことの復習と、将来の理想像について考えを深めました。戦略とは、目標を設定し、その目標に向かって進むための道筋をどのように描くかを思考することです。この過程では、様々なフレームワークが活用され、それによって分析や思考の整理を助けることができます。ただし、これらのフレームワークは、理解し適切に活用しないと、整合性が欠けたり、表面的な分析で終わってしまうことがあるため、注意が必要です。 ゴールの方向は? 現在取り組んでいるプロジェクトでは、ゴール設定に迷う案件があります。そこで、まずは現状の分析にいくつかのフレームワークを活用し、外部環境と内部環境を分析することで、目指すべきゴールの方向性を見つけ出そうと考えています。 仕事の分担はどう? さらに、4Wで学んだ選択と捨てるという概念についても、リソース不足のために自分が抱えてしまうことが多いですが、部分的でも他の人に業務を任せることを実施していきたいと思います。 考える時間は? 日々の業務量が多いため、場当たり的に業務をこなしてしまう傾向があります。そのため、しっかりとした分析や戦略を練る時間を確保できていないのが現状です。これを改善するために、自分のスケジュールに考える時間を組み込んでいきます。また、フレームワークを自分のものにするために、日常的に使う意識を持つことも重要です。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

データ・アナリティクス入門

分析の魔法: 自立したアプローチへの道

分析の目的は何を考えるべきか? 分析に取り組む際には、最初に目的の確認と仮説を立てることが重要です。適切に比較するためには、比較項目以外の条件を統一することで、意思決定がしやすくなります。また、分析は要素に分解して考えると良いでしょう。具体的に比較する内容を明確にし、より良い意思決定を支援します。 自立した分析をどう支援する? 私は分析チームのマネジメントを担当しており、各部門の分析支援において主に分析計画の確認と承認を行っています。分析の依頼を受けるにあたって、依頼内容をそのまま受け入れるのではなく、各部門が自立して分析を行えるようサポートすることが求められます。また、分析実務では、計画通りに進められているか、目的に沿って比較が明確に行われているかを確認し、より良い表現を習得したいと考えています。この経験を、今後の分析計画や実務に活かしていきたいと思います。 どのように分析計画を進めるべき? 分析計画では、依頼内容をそのまま受けるのではなく、分析の目的をしっかりと確認し、要素に分解して比較項目を定めます。何を明らかにすべきか仮説を立て、データの収集、加工、評価を行います。さらに、比較項目以外の条件統一も意識します。また、目的を確認せずに分析実務に入らないよう留意します。分析実務では、目的に沿って明確な比較ができているか、また、読者を考慮したグラフなどの表現を適切に行うよう心がけます。

アカウンティング入門

財務諸表の読み方でビジネス力を向上

貸借対照表で何が分かる? 貸借対照表について学んだことで、資金の調達やそのストックの方法についてイメージすることができました。表や実際の企業の例を使って理解を深めることができ、貸借対照表と損益計算書の関係性が明確になりました。特に、純利益と純資産がリンクしている点が印象的でした。 借金はリスクか機会か? また、ケーススタディを通じて、借金という一見リスクに見える行為が、実際には事業を成功させる上で重要な要素になることを学びました。例えば、カフェの事例では、自己資金だけで開業した場合、コンセプトである非日常感が失われ、結果として売上が落ち、倒産のリスクが高まる可能性があることが具体的に理解できました。 競合分析に財務諸表をどう活用する? この知識を競合分析に活用したいと思います。具体的には、内資系や外資系、一般社団法人のような競合の貸借対照表を見て、企業の体力や戦略を予測することができると考えています。売上やシェアが好調そうな企業でも、実際には財務的に厳しい状況にあるかもしれません。 競合企業の財務諸表を各社のホームページからダウンロードして、基本的な資産、負債、純利益を見ながら仮説を立てます。さらに、損益計算書もチェックし、どれだけの利益が純利益に組み込まれているか、または寄付などで資産化しているかを確認することで、自社の財務的安定性を客観的に判断したいと考えています。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right