リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

クリティカルシンキング入門

学びの姿勢で未来を切り拓く

6週間の振り返りは? 6週間を振り返ると、多くの学びがありました。クリティカルシンキングだけでなく、人生において学び続けることの重要性についても改めて確認できました。 大切な学びの姿勢は? 学びを進める上で重要な3つの姿勢として、目的を意識すること、自他の思考のクセを認識すること、問い続けることが挙げられます。また、相手視点での考察も重要であり、これを学びの前提条件として、今後も積極的に新しい学びに挑戦していきたいと思います。 問いと分析はどう? クリティカルシンキングでは、「問いは何か?」という点からスタートすることが大切です。分析過程においては、データの加工が必要であることを理解し、問いを解決するためには高解像度の分析を心掛けたいと考えています。そのためにはデータ分析の知識が重要です。また、主観に偏らず客観的に考えるために、フレームワークを活用する方法も知っておく必要があります。 知識の実践はどう? これらの知識は、以下のように自分の仕事で活用していきます。自部署の会議で発表する際は、明確な問いを基にPREP法を用いて内容を組み立てます。他者の言葉を理解する際は、相手の前提条件を考慮し、フォロワーシップを発揮して場の理解度を高めたいです。また、自分の考えをまとめる際は、アイデアを出す段階から問いを明確にし、誰に何を説明すべきかを意識します。対象に合ったデータ加工やスライド作成を行い、効果的なプレゼンテーションを目指します。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

データ・アナリティクス入門

実務に直結!データ活用の学び

実務講義はどう感じる? 今週までの講義やグループワークを終え、本格的なデータ加工、代表値とビジュアル化、データ傾向の把握といった実務に直結する講義が始まりました。私自身、エクセルの基本理解が十分でなかったため、代表値や散らばりを用いてデータ傾向を確認する方法や、グループワークで触れたピボットテーブルやクエリを活用した作業効率化に関する気づきは、今後につながる貴重な学びとなりました。これまでの業務の進め方を見直す上でも、大変有意義な受講でした。 業務効率向上の秘訣は? 所属企業ではグループ店舗のデータ集計・分析や戦略提案を担当していますが、基本知識の不足から作業効率が悪く、長時間を要することが多く苦労していました。しかし、今回の学びを通じて、データの意味を正しくとらえる方法や、効率的な集計作業の進め方が理解できたため、すぐに実務に活かしながら、少しずつスキルを向上させていこうと考えています。 基本技術はどう磨く? さらに、グループワークを経て代表値や散らばりの重要性に加え、エクセルのピボットテーブル操作など、データ集計の基本技術の習得が急務であると実感しました。そのため、早速オンライン動画でエクセル操作(ピボットテーブル活用)のレクチャーを受け、本日以降はこれまで触れていなかった基本知識をさらに深めるとともに、データの傾向把握のために代表値や散らばりに注目した確認を行い、誤ったデータ解釈につながらないよう注意していこうと思います。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

アカウンティング入門

企業分析で広がるIT投資の世界

財務諸表の理解が深まる瞬間とは? 総合演習を通じて、実際の企業のP/L(損益計算書)やB/S(貸借対照表)を確認することで、事業構造と諸表の関係性を実感することができました。私は個人的に株式の運用を少し行っており、これまで気になる会社の決算説明資料を読む機会がありました。しかし、それらの多くはP/Lに関する内容が中心であり、B/Sをじっくり見ることはほとんどありませんでした。このことに気づいたのも今回の発見でした。また、特定企業のB/Sを初めて詳しく確認した結果、興味がさらに深まりました。 IT投資比率の適正とは? 私の業務は情報システム・セキュリティ管理です。ここでは、IT投資コストがP/L上で一般に販売費・一般管理費として扱われるため、これに関連する投資コストが売上高に対してどの程度の割合を占めるかを把握し、売上高IT投資比率としてモニタリングしています。これにより、競合や業界平均と比較しつつ、適正なIT投資を導けるよう工夫していきたいと考えています。 クラウド活用企業の比較方法は? 自社のIT投資コストについても、売上高IT投資比率を指標として経年でのモニタリングを行い、競合や業界平均などと比較することで、適正なIT投資判断に努めています。また、自社の情報システムはほとんどがクラウドで構成されているため、固定資産が少ないという特徴があります。この特徴を考慮した上で、適切な比較対象を選定していく必要があると感じています。

アカウンティング入門

数字の向こうに広がる未来

企業資金の流れはどうなる? 企業の貸借対照表を通して、企業がどのように資金を調達し、どのように投資して価値を生み出しているのか、その流れがしっかりと浮かび上がる点に強く印象づけられました。単に資金の有無を見るのではなく、どのように借り入れ、どの項目に使ったのかという一連の動きから、企業の戦略や成長の方向性を読み取れることが大きな学びでした。数字の裏に隠れた意図を考えることで、企業の本質により深く迫ることができると実感しました。 自社財務はどう捉える? 今後は、まず自社の貸借対照表に注目し、一つひとつの項目を丁寧に読み解くことから始めます。自社がどのように資金を集め、どこに投資しているのか、その背景にある目的や意図を理解することが非常に重要だと感じています。日々の業務に追われがちな中でも、財務の流れに意識を向けることで、自社の強みや改善すべき点、さらには将来的な方向性を具体的に見出すヒントになると考えています。 実践で知識はどう活かす? また、学んだ知識を実践に活かすためには、定期的に貸借対照表をチェックし、各項目ごとに詳細な分析を行うことが大切です。単に数字を理解するだけでなく、自分の言葉で説明できるように言語化し、その内容をチームや上司と共有することで、理解をさらに深められると考えています。こうした分析から得られた気づきを具体的な行動や改善策に結び付けることで、学びが業務にしっかりと活かされていくと期待しています。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

クリティカルシンキング入門

問いの力で未来を切り拓く

問題の本質は何? 上司とのレビューで「本当にこれが問題か?イシューは何か?」と問われることを受け、今回学んだイシューの特定ポイントを実践で活用したいと考えています。これにより、不要な議論を減らし、効率的なディスカッションが可能になります。 問い方は合ってる? まず、イシューを特定する際のポイントは次のとおりです。①問いの形にすること。たとえば、「来期の予算について」ではなく、「来期の予算をどう達成するか」という問いに変える必要があります。②具体的に考えること。曖昧な表現ではなく、明確な内容で示す点が重要です。③一貫性を持って押さえ続けること。議論の軸をぶれさせず、常に今ここで答えるべき問いにフォーカスすることが求められます。 仮説の見方はどう? また、仮説を立てた上で各施策のインパクトをシミュレーションすることも大切です。たとえば、事例としてマクドナルドの取り組みが示すように、数値の仮入れを行うことで施策の効果を具体的に測ることが可能となります。これにより、より効果的な施策を実施できるようになります。 現状分析は進んでる? グループや各事業の課題を洗い出す際には、定量的な数値や定性アンケートを基に分析し、仮説を立てた上で複数の視点から切り口を考えることが求められます。そして、得られた問題に対して「本当にこれは問題なのか?」と自問しながら、今ここで答えるべきイシューを見極める習慣を身につけることが重要です。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right